Code comparison: Problem 1

J. Sheil, O. O. Versolato, H. A. Scott, S. Langer, H. Frank and V. Bakshi

ADVANCED RESEARCH CENTER FOR NANOLITHOGRAPHY

Atomic kinetics of tin plasmas

Problem 1

This problem explores the atomic kinetics of tin under conditions relevant for EUV production.

Participants were asked to compute the charge state distribution, absorptivity, emissivity, **spectral purity**, internal energy density and radiative power losses for cases shown below:

ID	1	2	3	4	5	6	7		
Te	10	15	20	25	30	35	40		
Ne	10 ¹⁹ Critical electron density for CO ₂ laser light						t		
								,	
ID	8	9	10	11	12	13	14	15	16
Te	20	25	30	35	40	45	50	55	60
Ne			•	•	10 ²⁰				
ID _	17	18	19	20	21	22	23	24	25
Te	20	25	30	35	40	45	50	55	60
Ne					10^{21}	Critical e	lectron de	nsity for N	d:YAG lase
	entited electron density for ridinite								

Participants

We received **10** submissions for problem 1

Name	Institution	Code	non-LTE	LTE
Akira Sasaki	National Institute for Quantum and Radiological Sciences	JATOM		
Howard Scott	Lawrence Livermore National Laboratory	Cretin	x 3	
Ilya Vichev	Keldysh Institute for Applied Mathematics	THERMOS		
lgor Golovkin	Prism Computational Sciences	PrismSPECT		
John Sheil	Advanced Research Center for Nanolithography	ATOMIC		
Hilik Frank	Lawrence Livermore National Laboratory	SEMILLAC		

- Compare key quantities (average charge state, spectral purity, etc.) for each electron density group.
- Global comparison of internal energy density and radiative power losses.

ID	1	2	3	4	5	6	7		
Te	10	15	20	25	30	35	40		
Ne	10 ¹⁹]		
								-	
ID	8	9	10	11	12	13	14	15	16
Te	20	25	30	35	40	45	50	55	60
Ne					10^{20}				
ID	17	18	19	20	21	22	23	24	25
Te	20	25	30	35	40	45	50	55	60
Ne					10^{21}				

$$n_e = 10^{19} \text{ cm}^{-3}$$

$n_e = 10^{19}$ cm⁻³: Mean charge state

$n_e = 10^{19} \text{ cm}^{-3}$: Ion fraction

$n_e = 10^{19} \text{ cm}^{-3}$: Ion fraction

$n_e = 10^{19} \text{ cm}^{-3}$: lon fraction

$n_e = 10^{19} \text{ cm}^{-3}$: Emissivity

$n_e = 10^{19} \text{ cm}^{-3}$: Emissivity

$$n_e = 10^{20} \text{ cm}^{-3}$$

$n_e = 10^{20}$ cm⁻³: Mean charge state

$n_e = 10^{20}$ cm⁻³: Ion fraction

$n_e = 10^{20}$ cm⁻³: Ion fraction

$$n_e = 10^{21} \text{ cm}^{-3}$$

$n_e = 10^{21}$ cm⁻³: Mean charge state

pectral purity =
$$\frac{\int_{13.365}^{13.635} \eta_{\lambda} d\lambda}{\int_{5}^{20} \eta_{\lambda} d\lambda}$$

$n_e = 10^{19} \text{ cm}^{-3}$: Emissivity

 $n_e = 10^{21} \text{ cm}^{-3}$: Emissivity

Spectral purity: $n_e = 10^{19}$, 10^{20} & 10^{21} cm⁻³

 $T_e(eV)$

 Spectral purity decreases as you move to higher densities and higher temperatures

Radiative power losses: 10¹⁹, 10²⁰ & 10²¹ cm⁻³

Radiative Power Losses (RPL)

Total contribution from:

- bound-bound
- bound-free (recombin.) and
- free-free transitions (bremsstr.)

Good agreement between codes for all three electron density sets.

Internal energy density: 10¹⁹, 10²⁰ & 10²¹ cm⁻³

Conclusion

- Best agreement between mean charge values at low T_e.
- LTE submissions predict highest spectral purity for $\overline{Z}\approx 12.$ Greater spread in \overline{Z} for the non-LTE submissions.
- Spectral purity decreases with an increase in density (and temperature).
- Good agreement between codes for the radiative power losses and internal energy densities.