

2024 Source Workshop - List of Accepted Papers

(Version September 16, 2024)

#	Paper#	Area	First Name	Last Name	Company	Paper Title
Т	гарсі #	Alea	Tilstitallie	Last Name	Company	raperfitte
1	S1	Keynote	Jan	Van Schoot	ASML	2024 Source Workshop Keynote Presentation (Tentative Title)
1	S2	Keynote	Peter	Moulton	MIT LL	Solid state laser drivers for EUV plasma sources
1	S3	Keynote	Manuel	Guizar- sicairos	PSI	3D Nanotomography via Coherent X-ray Lensless Imaging
1	S4	Keynote	Torsten	Feigl	optiXfab	2024 Source Workshop Keynote Presentation (Tentative Title)
1	S5	Keynote	Konstantin	Koshelev	ISTEQ	Lithium, a "dream fuel" for actinic inspection?
2	S10	Modeling /Code Comparison	Howard	Scott	LLNL	2024 Code Comparison Summary
2	S11	Modeling /Code Comparison	Samuel	Totorica	PPPL	Kinetic Simulations of Ion Dynamics in Laser-Driven Tin Plasma EUV Sources
2	S12	Modeling /Code Comparison	lgor	Golvokin	Prizm Computations	2024 Code Comparison Results
2	S13	Modeling /Code Comparison	Akira	Sasaki	QST	2024 Code Comparison Results
3	S21	Lasers, HHG and Applications	Sven	Breitkopf	AFS (Trumpf)	High-Flux XUV Beamlines enabling photon-hungry imaging and spectroscopy methods
3	S22	Lasers, HHG and Applications	Bastian	Manschwetus	Class 5 Photonics	Recent advances on High-Brilliance EUV Sources based on high harmonic generation

					(Version September 16, 20	24)
	# Paper #	Area	First Name	Last Name	Company	Paper Title
3	S23	Lasers, HHG and Applications	Thomas	Mezger	Trumpf	Ultrafast Thin-Disk Amplifiers and Nonlinear Pulse Compression
3	S24	• •	Oleg	Pronin		Pulse shortening with multipass cells
3	S25	Lasers, HHG and Applications	Jens	Limpert	Univ. of Jena	2µm wavelength fiber lasers for next generation EUV plasma sources
4	S31		Takeshi	Higashiguchi	Utsunomiya University	Recent progress of beyond EUV sources
4	S32		Brendan	Reagan	LLNL	Solid state λ≈2 μm laser drivers for EUV lithography
4	S33		Kevin	Heidrich	<u> </u>	A Path to 2000 W
4	S34		Ladislav	Pina	Rigaku	Grazing Incidence Optics Calculations for Plasma and 6.xx nm Coherent Beams
4	S35		Bjorn	Hegelich	TAU Systems / University of Texas at Austin	Industrialization of laser-driven accelerators and light sources
4	S36		Marcelo	Ackermann	University of Twente	2024 Source Workshop - Invited Presentation (Tentative Title)
5	S41	HVM EUV Sources	Jorge	Gonzales	ARCNL	Effect of target mass on CO2-driven EUV emitting tin plasma for nanolithography
5	S42	HVM EUV Sources	Klaas	Bijlsma	University of Groningen	Electron capture in collisions of Sn ions with H2 molecules
5	S44	HVM EUV Sources	Yiming	Pan		Investigation of laser-plasma interaction in a dual-pulse laser produce tin plasma

					(Version September 16, 20	24)
7	Paper#	Area	First Name	Last Name	Company	Paper Title
		HVM EUV				Pulsed EUV induced plasma: fast transients, accumulation and
5	S45	Sources	Mark	van de Kerkhof	ASML	hybrid 3D-PIC model
		HVM EUV				
5	S46	Sources	Ahmed	Diallo	PPPL	Laser Plasmas Interactions for Microelectronics: Status Update
		HVM EUV			Huazhong University of	Laser produced tin droplet plasma interference diagnosis and
5	S47	Sources	Wang	Xinbing	Science & Technology	droplet deformation study
		HVM EUV				Plasma Dynamics and Future of LPP-EUV Source for
5	S48	Sources	Hakaru	Mizoguchi	Kyushu university	Semiconductor Manufacturing II
		HVM EUV				Plasma-particle Interaction under conditions relevant to EUV
5	S49	Sources	Job	Beckers	TU Eindhoven	Lithography
		HVM EUV				Spectroscopic Imaging of Tin Gas Vaporized Near Plasma
5	S50	Sources	Dion	Engels	ARCNL	Threshold
		HVM EUV				
5	S51	Sources	Felix	Kohlmeieer	ARCNL	Power Partitioning Reconstruction for Laser Produced Plasmas
		Metrology				
6	S61	Sources	David	Reisman	Energetiq	Next-Generation Discharge-Produced Plasma (DPP) EUV Source
		Metrology				
6	S62	Sources	Fumio	lwamoto	Gigaphoton	Development progress of Gigaphoton's Sn-LPP
		Metrology				Status update of EUV light source development for inspection
6	S63	Sources	Keitaro	Hayashida	Laseretec	tools
		Metrology				
6	S64	Sources	Peter	Smorenburg	ASML	XUV light sources for semiconductor metrology
		Metrology				
6	S65	Sources	Yusuke	Teramoto	Ushio	A compact laser-driven short-wavelength radiation source

					(Version September 16, 20	024)
#	Paper#	Area	First Name	Last Name	Company	Paper Title
7	S71	Optics and Metrology	Sascha	Brose	RWTH	Ultra-compact inline transmission grating spectrograph for EUV wavelengths
7	S72	Optics and Metrology	Analia	Fernande	РТВ	From EBL Gratings to Advanced Photonics for the inspection of Complex Nanostructures
7	S73	Optics and Metrology	Lucas	Poirier	TNO	EUV-sources for optics-lifetime and materials testing
7	S74	Optics and Metrology	Muharrem	Bayraktar	University of Twente	EUV source metrology using transmissive and diffractive optics
7	S75	Optics and Metrology	Martin	Wünsche	Indigo Optics	EUV Reflectometry and Non-Destructive Nanoscale
7	S76	Optics and Metrology	Linus	Nagel	RWTH	Extreme ultraviolet high intensity exposure setup for small-spot in-band exposures
7	S77	Optics and Metrology	Peter	Kraus	ARCNL	How can we achieve at-resolution metrology in optical microscopy?
9	S81	Poster	Abdul	Rehman	Univ of Twente	Predicting the chemical stability of thin film coatings in hydrogen for EUV applications
9	S82	Poster	Duncan	Ramsamoedj	Univ of Twente	Investigating EUV degradation with in-situ EUV transmission measurements
9	S83	Poster	Tatsuya	Soramoto	Utsunomiya University	Short-wavelength EUV source by a continuous liquid bismuth jet
9	S84	Poster	Tsukasa	Sugiura	Utsunomiya University	Enhancement of the EUV conversion efficiency using multiple- solid-state-laser pulse
9	S85	Poster	Karl	Shubert	ARCNL	Observation of Surface Modulation on Free-Flying Liquid Metal Sheets

	(Version September 16, 2024)						
:	Paper#	Area	First Name	Last Name	Company	Paper Title	
ç	S87	Poster	TBA	ТВА	Energetiq	2024 Source Workshop Poster Presentation (Tentative Title)	
ç	S88	Poster	Moinuddin		Helmut-Schmidt- Universität	High Harmonic Generation with a compact amplification-free thin-disk laser-oscillator system	
ç	S89	Poster	Chun-Tse		National Central University	Numerical Study of Laser-Produced Plasma Light Source on Improving Conversion Efficiency by Three Pulse Scheme	
S	S90	Poster	Ismael	Gisch	RWTH	Broadband reflective spectrometer for high-resolution spectral characterization of radiation sources	
ć	S91	Poster	Alexander	Tovstopyat	ISTEQ Group	LEUS: A Novel LPP EUV Light Source with Fast-Rotating Lithium Target and Unique Spectral Brightness	