lnnec

Trends in e-beam Metrology and Inspection

Gian Francesco Lorusso

Outline

- Introduction
 - Low Voltage
 - High Voltage
 - Backscattered
 - High Beam Current
 - Al
 - Multi-beam
- Conclusion

Introduction

INTRODUCTION: E-BEAM HISTORY

ເງຍອ

Early signs of e-beam Renaissance

GF Lorusso, et al, "Enabling CD SEM metrology for 5nm technology node and beyond" Proc 10145: Metrology, Inspection, and Process Control for Microlithography XXXI SPIE (2017)

VOLTAGE CONTRAST LATERAL NW

Already in 2017, many "unconventional" CDSEM methods had started to appear

Factors driving Evolution

High NA EUVL and new devices architectures are imposing requirements stricter than ever
Imec engagement with all major e-beam equipment suppliers is a unique advantage

EUVL Workshop. Leuven 2023

ເກາຍc

Low Voltage

Why do we need thin resist?

Thin resist is needed to cope with low DOF and to limit aspect ratios in High NA EUV

Baseline

• Thinner resist reduces the imaging contrast

ເງງຍຸ

EUV thin film evaluation report

Target : Pitch=32nm, L/S=17.5nm/14.5nm

G Lorusso, et al, "Metrology of thin resist for high NA EUVL "Proc. SPIE 12053, Metrology, Inspection, and Process Control XXXVI SPIE (2022)

High-precision Dynamic Repeatability of MOR/CAR thin film resist wafers confirmed at low LE.

High Voltage

Nanosheet Recess Metrology using HV

G Santoro et al, "Recess metrology challenges for 3D device architectures in advanced technology nodes" Proc. SPIE 12053, Metrology, Inspection, and Process Control XXXVI SPIE (2022)

High Voltage SEM recess metrology

LIIIEC APPLIED EUVL Workshop. Leuven 2023

Multilayer Metrology

S Kang et al, "Advanced high-voltage e-beam system combined with an enhanced D2DB for on-device overlay measurement" Proc. SPIE 12496, Metrology, Inspection, and Process Control XXXVII (2023)

MI, V0, M0 and Gate multilayer D2DB measurements of CD, EP, OVL, Inter-layer OVL

EUVL Workshop. Leuven 2023

Backscattered

CFET Gray Level Metrology for Vertical EPE

W. Sun, et al., In-line metrology for vertical edge placement control of monolithic CFET using CD-SEM, Proc. SPIE. 12496, Metrology, Inspection, and Process Control for Microlithography XXXVII, (2023)

100

Good Correlation Coefficient (~0.85) with TEM X-SEC

Abnormalities can be confirmed with SEM images

Gray level metrology enabling accurate Vertical Edge Placement control

Inspire the Next EUVL Workshop. Leuven 2023

Beam current

Programmed defect matrix

P32nm, 30nm Target FT CG6300, Stochalis

 CD SEM was used (small FOV, small pixel size, large number of frames) to review the programmed defect matrix

Breaks

Bridges

- Programmed defect matrices for breaks and bridges were used to assess printability.
- Almost all printing (both brides and brakes) defects are detected

HITACHI Inspire the Next EUVL Workshop. Leuven 2023

e-beam Inspection – Random defects

Full Bridges Protrusion P32nm, 30nm FT, full PD matrix inspected G\$1000, MMI, area inspected 150x100µm

• E-beam inspection is able to capture very small random defect, both protrusion and necking

LITTACHI Inspire the Next EUVL Workshop. Leuven 2023

High Throughput mode vs High Sensitivity mode

High Throughput **High Sensitivity** Breaks Bridges

G. Lorusso, et al., Dry Resist Metrology Readiness for High-NA EUVL, Proc. SPIE. 12496, Metrology, Inspection, and Process Control for Microlithography XXXVII, (2023)

• High throughput mode improves throughput 14 x with respect to high sensitivity mode (from 105 h/mm² to 7.5 h/mm²)

• Hight throughput mode decreases the sensitivity of 12% for Breaks and 24% for Bridges

HITACHI Inspire the Next EUVL Workshop. Leuven 2023

AI Denoising

Denoised I Frame

Raw 64 Frames

• Good PSD match between denoised images and raw 64 frame images.

LIIIec 💿 Invidia. EUVL Workshop. Leuven 2023

Al Denoising of Thin Resist

M. Kim, et al., Frequency-informed deep-learning denoising method supporting sub-nm metrology for high NA EUV lithography,

0.01

0.01

0.1

Single AI model working for all process conditions with different noise levels.

LIIIec 💿 Invidia. EUVL Workshop. Leuven 2023

Gian Lorusso

0.1

Multibeam

Multi-beam Systems

• Development of high-throughput multi-beam systems on its way

LIIIEC 🚸 ASML EUVL Workshop. Leuven 2023

Conclusions

Conclusions

ເກາຍc

- The increasingly strict ICM requirements are the environmental reason that is forcing e- beam metrology to evolve fast.
- E-beam technology is taking advantages of its ability to re-define and re-use its critical parameters in a flexible way to occupy new application spaces. More specifically:
 - Low Voltage (Thin resist)
 - High Voltage (3D metrology)
 - Backscattered (Vertical EPE)
 - High Beam Current (defectivity)
 - Al (Denoising)
 - Multi-beam (Throughput)
- We expect this trend to continue to overcome the many obstacles standing in the way of Moore's law.

Acknowledgments

 We wish to thank everyone for the many useful discussions and for the support for this work.

embracing a better life