Fabrication of EUV light source with cold cathode electron beam (C-beam)

Sung Tae Yoo, and Kyu Chang Park

Department of Information Display, Kyung Hee University, Dongdaemun-gu, Seoul, 02447, Korea

Why C-beam for EUV lighting?

 Carbon nanotube (CNT)-based cold cathode electron beam (C-beam) was manufactured for EUV lighting.

Fabrication process of the CNT emitters

 The CNT emitters have fully vertically aligned structure and grown pre-defined selective area.

UV Light developed at Kyung Hee University (UV-A to UV-C)

UV spectrum & captured image of UV light generation using C-beam

UV generation was confirmed with C-beam pumping technology.

Comparison btw LPP and C-beam

Laser produced plasma (LPP) source

- High power CO₂ laser
- High-temperature plasma
 - An average electron temperature of 76.6 eV [Appl. Sci. 9, 2827 (2019)]
- Ultrahigh pulse driving (100 kHz)
- Very expensive

C-beam pumping technology

- Electron bombardment using C-beam
- Cold plasma
 - Less than 1 eV
 [J. Appl. Phys. 110, 093304 (2011)]
- Multi-beam irradiation is possible
- Adjustable size of C-beam from micrometer to centimeter scale
- DC & DC-pulse power supply

Configuration of EUV generation using C-beam

Schematic of EUV generation with C-beam

Photo of EUV-emitting plasma

 Electrons emitted from the C-beam directly collide with Sn, excitation and ionization of Sn atoms evaporated by electron bombardment, resulting in EUV-emitting plasma.

Controlling the intensity of EUV light

 $\,$ $\!$ $\!$ EUV photodiode equipped with a 150 nm thick Zr filter

- EUV intensity depends on C-beam parameters with anode impact power and driving.
- Unlike DC driving, DC-pulse driving generates EUV light with minimal pressure change by changing the frequency.

EUV lithography using PMMA photoresist

• When observed with an optical microscope at 500 times magnification, the part covered by the sapphire and the part not covered by the sapphire can be accurately distinguished.

Summary

 EUV light generated by direct irradiation of C-beam was verified using a photodiode equipped with Zr filter and PMMA photoresist.
 EUV intensity depends on C-beam parameters with anode voltage,

current, and DC-pulses.

References

- Yoo, S. T., & Park, K. C. "Sapphire Wafer for 226 nm Far UVC Generation with Carbon Nanotube-Based Cold Cathode Electron Beam (C-Beam) Irradiation" ACS omega 5.25, 15601-15605 (2020).
- Yoo, S. T., Lee, H. I., & Park, K. C. "Optimization of Zn₂SiO₄ Anode Structure for Deep Ultraviolet Generation With Carbon Nanotube Emitters" *IEEE J. Electron Devices Soc.* 7, 735-739 (2019).
- Yoo, S. T., Lee, H. I., & Park, K. C. "363 nm UVA light generation with carbon nanotube electron emitters" *Microelectron. Eng. 218*, 111142 (2019).
- Yoo, S. T., Hong, J. H., Kang, J. S., & Park, K. C. "Deep-ultraviolet light source with a carbon nanotube coldcathode electron beam" *J. Vac. Sci. Technol. B* 36(2), 02C103 (2018).
- Yoo, S. T., So, B., Lee, H. I., Nam, O., & Park, K. C. "Large area deep ultraviolet light of Al_{0.47}Ga_{0.53}N/Al_{0.56}Ga_{0.44}N multi quantum well with carbon nanotube electron beam pumping" *AIP Adv. 9*(7), 075104 (2019).
- Lee, J., Yoo, S. T., So, B., Park, K. C., & Nam, O. "Large-area far ultraviolet-C emission of Al_{0.73}Ga_{0.27}N/AIN multiple quantum wells using carbon nanotube based cold cathode electron-beam pumping" *Thin Solid Films* 711, 138292 (2020).

E-mail: kyupark@khu.ac.kr