



<u>S</u>2

## UPDATE OF >300W HIGH POWER LPP-EUV SOURCE CHALLENGE IV FOR SEMICONDUCTOR HVM



Dr. Hakaru Mizoguchi

Senior Fellow, Gigaphoton Inc.

Hiroaki Tomuro, Yuichi Nishimura, Hirokazu Hosoda, Tamotsu Abe, Hiroshi Tanaka, Yukio Watanabe, Yutaka Shiraishi, Tatsuya Yanagida, Georg Soumagne, Fumio Iwamoto, Shinji Nagai, Yoshifumi Ueno, Takashi Suganuma, Gouta Niimi, Takayuki Yabu, Tsuyoshi Yamada, Hiroaki Nakarai and Takashi Saitou

1- Gigaphoton Inc. Hiratsuka facility: 3-25-1 Shinomiya Hiratsuka Kanagawa,254-8567, JAPAN 2- Gigaphoton Inc. Head Office: 400 Yokokura-shinden Oyama-shi Tochigi, 323-8558, JAPAN

Copyright 2021 GAPHOTON INC. all rights reserved.

# Agenda

### Introduction

- New Trend of Semiconductor Manufacturing Technology
- New DUV laser processing for Middle End Semiconductor Packaging

#### **EUV** Source development for Lithography

- Concept and key technologies
- 330W EUV Source System
- System Operation Data
- Lifetime Extension of Collector Mirror
- Extendibility toward >800W of EUV power

## Summary & Acknowledgement



# Agenda

### Introduction

- New Trend of Semiconductor Manufacturing Technology
- New DUV laser processing for Middle End Semiconductor Packaging
- **EUV** Source development for Lithography
  - Concept and key technologies
  - 330W EUV Source System
  - System Operation Data
  - Lifetime Extension of Collector Mirror
  - Extendibility toward >800W of EUV power

## Summary & Acknowledgement



# New Trend of Semiconductor Manufacturing Technology

#### New Trend

3D structure, Minimization by EUV lithography and Packaging are three key direction. EUV lithography is now rump up. Huge investment are on going all over the would.



MNC-2021

GAPHOTON INC. all rights reserved. Copyright 2021

Semiconductor

## Development of Material Processing for Packaging (1) Package Layout dominate performance of Chip



http://www.wow.pi.titech.ac.ip/research01 e.html Copyright 2021 GAPHOTON INC. all rights reserved.

## Development of Material Processing for Packaging (2)



Copyright 2021 GAPHOTON INC. all rights reserved.

# **Development of Material Processing for Packaging (3)**

Hybrid Laser for Advanced Material Processing Focused spot profile

**New laser Processing PJT of NEDO : 2017-2022** Gigaphoton Developed Hybrid ArF laser for Advenced Material Processing







- Short wavelength
  - Precise micromachining
- High photon energy
  - Direct cutting of atomic / molecular bonding
- High average power
  - ► Fast processing rate
  - Good beam quality
    - Further precise micromachining
    - Achievement of higher energy fluence
- Short pulse duration
  - Reduction of heat affected zone (F (NEDO)



Copyright 2021 GAPHOTON INC. all rights reserved.

# Development of Material Processing for Packaging (4)

Advanced Laser Processing by using DUV Laser on Difficult Materials

Slide



## **Development of Material Processing for Packaging (5)**

#### **Excimer Laser Light Source for Material Processing**

Product
 Gigaphoton have developed
 the commercial laser
 G300K and GT600K
 for material Processing.

- Key performances
- Short wavelength (248nm)
- High power (300W, 600W)
- High frequency (4000Hz, 6000Hz)



| Model                                 | G300K             | GT600K                 |
|---------------------------------------|-------------------|------------------------|
| Wavelength (nm)                       | 248               |                        |
| Output light power (W)                | 300               | 600                    |
| Output light energy (mJ/pulse)        | 75                | 100                    |
| Output light Repetition frequency(Hz) | 4000              | 6000                   |
| Body size (mm)                        | 1975 x 800 x 1950 | 2,800 x 820 x<br>2,120 |
| Body weight (kg)                      | 1600              | 3400                   |
|                                       |                   | GIGAPHOTON             |

Copyright 2021 GAPHOTON INC. all rights reserved.

## Agenda

### Introduction

- New Trend of Semiconductor Manufacturing Technology
- New DUV laser processing for Middle End Semiconductor Packaging

#### **EUV** Source development for Lithography

- Concept and key technologies
- 330W EUV Source System
- System Operation Data
- Lifetime Extension of Collector Mirror
- Extendibility toward >800W of EUV power

## Summary & Acknowledgement



# Gigaphoton LPP Source Concept (1/3)

State of Art Gigaphoton LPP Source Configuration\* was Established in 2007 \*several patented

- 1. High ionization rate and CE EUV tin (Sn) plasma generated by dual-wavelength shooting via CO<sub>2</sub> and pre-pulse solid-state lasers
- 2. Hybrid CO<sub>2</sub> laser system with short pulse high repetition rate oscillator and commercial cwamplifiers
- 3. Tin debris mitigation with a super conductive magnetic field
- 4. Accurate shooting control with droplet and laser beam control
- Highly efficient out-of-band light reduction with grating structured C1 mirror



Copyright 2021 GAPHOTON INC. all rights reserved.

# Gigaphoton LPP Source Concept (2/3)

Pico-second pre-pulse + Magnetic mitigation technology was established in 2012

- Mass limited 20µm droplets
- Pico-second pre-pulse laser produce high conversion efficiency
- Super conductive magnets and ion catchers enable Magnetic Ion trapping
- Low pressure H<sub>2</sub> gas flow enable **real-time collector cleaning**.



# Gigaphoton LPP Source Concept (3/3)



Slide 13

#### Extremely High gain Amplifer technology was supplied by Mitsubishi Electric since 2012

mant for the Retter • With a classical model:  $P = P_*(g_0L + \ln \sqrt{1-r})^*$  Transverse-flow : Higher gain → Higher amplification efficiency Wider gas flow channel → Lower gas pressure → Higher gain Transverse-flow Axial-flow (4 kW) (5 kW) 700 cm<sup>2</sup> Gas flow cross-section 40 cm<sup>2</sup> 7 kPa 20 kPa Gas pressure Small signal gain 37 2.2 Multi-fold path Possible Impractical

Parameter Study

(\*) P: Power, P: Saturation power, g, I: Small signal gain, r: Loss 2013 International Symposium on Extreme Ultraviolet Lithography



Ref. Koji Yasui et. al., "Scalability of CO2 amplifiers to generate stable 500W extreme ultraviolet (EUV) beams", 2017 International Workshop on EUV lithography, https://www.euvlitho.com/2017/P12.pdf



Copyright 2021 GAPHOTON INC. all rights reserved.

MNC- 2021

MITSUBISH ELECTRIC

## Agenda

### Introduction

- New Trend of Semiconductor Manufacturing Technology
- New DUV laser processing for Middle End Semiconductor Packaging

#### **EUV** Source development for Lithography

- Concept and key technologies
- 330W EUV Source System
- System Operation Data
- Lifetime Extension of Collector Mirror
- Extendibility toward >800W of EUV power

#### Summary & Acknowledgement



## Layout of >330W EUV Light Source Pilot #1

#### **First HVM EUV Source**

- Original design was 250W EUV source
- >330W Power Challenge with **Upgraded Hardware**

| Operational specification<br>(Target) |                      | HVM Source         |                       |  |
|---------------------------------------|----------------------|--------------------|-----------------------|--|
|                                       | EUV Power            |                    | > 330W                |  |
| Perform<br>ance                       | CE                   |                    | > 5.5-6.0%            |  |
|                                       | Pulse rate           |                    | 100kHz                |  |
|                                       | Availability         |                    | > 90 %                |  |
| Techno<br>logy                        | Droplet<br>generator | Droplet size       | < 20 micron           |  |
|                                       | CO2 laser            | Power              | > 27 kW               |  |
|                                       | Pre-pulse<br>laser   | Pulse<br>duration  | ~10 ps pulse duration |  |
|                                       | Debris<br>mitigation | Magnet,<br>Etching | >3 months             |  |



Copyright 2021 GAPHOTON INC. all rights reserved.

16

## **Pilot #1: High Power EUV Source for HVM**



MNC- 2021

Copyright 2021 GAPHOTON INC. all rights reserved.

## Pilot #1: Driver laser & PPL system (1)



18

## Slide 19

# Pilot #1: Driver laser & PPL system (2)

## Amplifier laser

- Power unit :
  - Common for both PA and MA
- Laser head:
  - PA has multi optical pass with internal mirrors
  - MA has single optical pass





Copyright 2021 GAPHOTON INC. all rights reserved.

# Pilot #1: Driver laser & PPL system (3)

## CO2 Laser: Arrangement

- Optical Binding Module is isolated from the CO<sub>2</sub> Lase Chamber and Power Supply
- This allows chamber replacements to occur without axis realignment



### Pilot #1: Driver laser & PPL system (4) CO2 Laser: Maintenance

- Today chamber replacements occur once every two years (scheduled maintenance) or unexpected trouble.
- After CO<sub>2</sub> laser chamber replacements at maintenance or replacement, there is no beam axis adjustment necessary.
- Safe and easy procedures allow efficient maintenance with few people.





Copyright 2021 GAPHOTON INC. all rights reserved.

## **Beam axis control**

#### Configuration of Beam transfer system



# Pilot #1 : EUV Chamber System (1)

#### **EUV chamber system**



Copyright 2021 GAPHOTON INC. all rights reserved.

# Pilot #1 : EUV Chamber System (2)



Copyright 2021 GAPHOTON INC. all rights reserved.

Slide 24

24

# Pilot #1 : EUV Chamber System (3)



# Pilot #1 : EUV Chamber System (4)

High speed droplet generator was successfully released to Proto system

|                     |     | Proto#1 | Proto#2 | Proto#2 | Pilot#1 |
|---------------------|-----|---------|---------|---------|---------|
| Droplet speed       | m/s | 45      | 60      | 90      | 100     |
| Back pressure       | MPa | 12      | 20      | 40      | 50      |
| Max Repetition rate | kHz | 50      | 80      | 100     | 100     |
|                     |     |         |         |         |         |



Copyright 2021 GAPHOTON INC. all rights reserved.

## Agenda

## Introduction

- New Trend of Semiconductor Manufacturing Technology
- New DUV laser processing for Middle End Semiconductor Packaging

#### **EUV** Source development for Lithography

- Concept and key technologies
- 250W EUV Source System
- System Operation Data
- Lifetime Extension of Collector Mirror
- Extendibility toward >800W of EUV power

## Summary & Acknowledgement



Slide 27

## Pilot#1 system is in Operation.



MNC- 2021

55

## **CE Improvement with Pre-pulse Optimization**

Gigaphoton found >50% advantage of conversion efficiency by picosecond pre-pulse.



Very short pulse duration

with 1um wavelength

## Direct measurement EUV Sn parameters by Tomson Scattering

#### Previous results (<u>Sci. Rep. 2017</u>)

Electron density ( $n_e$ ) and electron temperature ( $T_e$ ) of the EUV source plasma can be clarified using TS. EUV emissivity ( $\eta_{EUV}$ ) was theoretically calculated using  $n_e$ ,  $T_e$ , and atomic model. <u>Kentaro Tomita</u> et.al. "Recent Diagnostic results of EUV Source and EUV induced plasma ",P42-EUV Source Workshop (2020)

2D velocity field in EUV plasma







Dr. Kentaro Tomita



Now Dr. Kentaro Tomita working in Hokkaido University since June 2020

富田健太郎 tomita.kentaro@eng.hokudai.ac.jp



Copyright 2021 GAPHOTON INC. all rights reserved.

## **Plasma - Beam Matching for Higher CE**

- 5.8% CE at 180mJ was already confirmed in small test bench by increased plasma size.
- CO2 beam non-uniformity of Pilot#1 due to beam expander design is improved.



## **Data for Higher Power**

■ >360W with >5% CE at 100kHz operation is demonstrated at Pilot#1 (short term)

Higher Droplet speed(>100m/s) realized 1mm spacing and demonstrated more stable EUV generation

Slide 32





## Long-term High Power Operation Data > 270W

270W stable operation was achieved.

|                              | Performance |
|------------------------------|-------------|
| Average power at IF          | 270W        |
| CO2 Power                    | 17kW        |
| CE                           | 5.4%        |
| Dose error average (3 sigma) | 0.03%       |
| Pulse Number                 | 10 Bpls     |
| Dose margin                  | 20%         |
| Repetition rate              | 100kHz      |

Plasma to IF: 30%



Copyright 2021 GAPHOTON INC. all rights reserved.

33

## Agenda

### Introduction

- New Trend of Semiconductor Manufacturing Technology
- New DUV laser processing for Middle End Semiconductor Packaging

#### **EUV** Source development for Lithography

- Concept and key technologies
- 250W EUV Source System
- System Operation Data
- Lifetime Extension of Collector Mirror
- Extendibility toward >800W of EUV power

#### Summary & Acknowledgement



# **Collector Mirror Technology**

#### **IR Reduction Technology is applied**

Gigaphoton is developing IR reduction mirror in co-operation with multiple mirror suppliers.



### **Change of Capping Layer and Multi-Layer under Tin Plasma Sputtering**

Slide 36

- Thickness changes at capping layer due to sputtering.
- First Si layer become thicker and reflectance down around 30% due to oxidization.



## CE Improvement & Energy distribution of Sn ionic charge states

- CE reaches >6% by optimization of pre-pulse parameter
- Effective suppression of high energy ion
- Further suppression of ion energy is on going

Target: Sn planer target Laser wavelength: 1064 nm Pulse duration: 6 ns (FWHM) Laser Intensity: 2.1x10<sup>11</sup>/W/cm<sup>2</sup>



Copyright 2021 GAPHOTON INC, all rights reserved.

## **Durability test of collector capping layer at New SUBARU**

Screening of oxidation of reflection layer with synchrotron radiation (λ=13.5nm) source (Name of SOR in Hyogo Univ.= "New SUBARU")
 Improvement of collector lifetime is on going



Two beam lines for EUV test in "New SUBARU"



Copyright 2021 GAPHOTON INC. all rights reserved.

#### Slide 39

## **Etching and Dissociation Sn balance on the Mirror Surface**

### Chemical Aquarium on the Mirror Surface



#### Tin ionization & magnetic guiding

- Tin is ionized effectively by double pulse irradiation
- Tin ions are confined with magnetic field
- Confined tin ions are guided and discharged from exhaust ports

#### Protection & cleaning of collector with H<sub>2</sub> gas

- High energy tin neutrals are decelerated by H<sub>2</sub> gas in order to prevent the sputtering of the coating of collector.
- Deposited tin on the collector is etched by H radical gas\*.
- Gas flow and cooling systems for preventing decomposition of etched tin (SnH<sub>4</sub>)
- \*H<sub>2</sub> molecules are dissociated to H radical by EUV-UV radiation from plasma.



Copyright 2021 GAPHOTON INC. all rights reserved.

## Further analysis of Collector Mirror Deposition.

Accuracy of the simulation has been improved by modifying initial Sn distribution

Slide 40



## **Collector Mirror: Lifetime Status**

- Capping layer and Tin contained Gas flow Improvement are effective.
- Collector reflectivity degradation is certainly improving.



### At present (125W level operation)





## Agenda

### Introduction

- New Trend of Semiconductor Manufacturing Technology
- New DUV laser processing for Middle End Semiconductor Packaging

#### **EUV** Source development for Lithography

- Concept and key technologies
- 250W EUV Source System
- System Operation Data
- Lifetime Extension of Collector Mirror
- Extendibility toward >800W of EUV power

#### Summary & Acknowledgement



## Next Requirement EUV Power scaling toward >800W (1)



Copyright 2021 GAPHOTON INC. all rights reserved.

Slide 43

## Next Requirement EUV Power scaling toward >800W (2)



EUV power scaling with CO2 laser power is discussed Scaling of CO2 laser power is feasible toward >800W.

|                                  | 4stage CO2L<br>Amp System<br>(current) | 6stage CO2L<br>Amp System<br>(+2AMP) | 8stage CO2L<br>Amp System<br>(+4AMP) |
|----------------------------------|----------------------------------------|--------------------------------------|--------------------------------------|
| Max CO2L output                  | 26 kW                                  | 39.0 kW                              | 52.0 kW                              |
| Max EUV power                    | 406 W                                  | 609 W                                | 811 W                                |
| Operation EUV Power *            | 360W                                   | 550W                                 | 740W                                 |
| Foot print                       | 9.9 x 2.5 m                            | + 3.6 x 2.4m                         | + 7.2 x 2.4m                         |
| Input Electricity<br>(full load) | 880 kVA                                | +300 kVA                             | +600 kVA                             |

\* Minimum dose margin requirement is at least10%.

**JIGAPHOTON** 

Copyright 2021 GAPHOTON INC. all rights reserved.

## Agenda

### Introduction

- New Trend of Semiconductor Manufacturing Technology
- New DUV laser processing for Middle End Semiconductor Packaging

#### **EUV** Source development for Lithography

- Concept and key technologies
- 250W EUV Source System
- System Operation Data
- Lifetime Extension of Collector Mirror
- Extendibility toward >800W of EUV power

## Summary & Acknowledgement



# Summary

#### Trend of Semiconductor Manufacturing

- 3D structure, Minimization by EUV lithography and Packaging are three key direction of Semiconductor manufacturing.
- Packaging technology is very important to enhance chip performance which is dominated physical size.
  Gigaphoton has started the business development of Middle edge process.
- EUV lithography is now rump up. Huge investment are on going all over the would.

#### EUV Source

- CO2 laser power upgrade >27kW and Beam uniformity upgrade is successfully done.
- >350W operation is successfully demonstrated at Pilot#1 system (short term).
- 250W had been achieved with only 18 kW of CO2 power during one week operation.
- ▶ -0.15%/Gpls with 125Wave. was demonstrated during 30Mpls with life test (125Wav.).
- Long-term Test and Challenge for Long-life Mirror and Availability. Engineering effort to fit thin deposition simulation and experiment is continuously doing under 270W condition.
- Next Requirement for High-NA exposure tool is >800W. Feasibility of CO2 laser driver is discussed.



Slide

## Acknowledgements



#### Thank you for co-operation:

- Mitsubishi electric CO<sub>2</sub> laser amp. develop. team: *Dr. Junichi Nishimae, Dr. Shuichi Fujikawa, Dr. Yoichi Tanino\* and others*
- Dr. Kentaro Tomita, Prof. Kiichiro Uchino and others in Kyushu University
- Prof. Takeshi Higashiguchi in Utsunomiya Univ.
- Prof. Takeo Watanabe in New Subaru Institute
- Dr. Akira Endo :HiLase Project (Prague) and Prof. Masakazu Washio and others in Waseda University

#### Thank you for funding:

EUV source development funding is partially support by (New Energy and Industrial Technology Development Organization) in JAPAN

#### Thank you to my colleagues:

EUV development team of Gigaphoton: *Hiroaki Nakarai, Tamotsu Abe, Takeshi Ohta, Krzysztof M Nowak, Yasufumi Kawasuji, Hiroshi Tanaka, Yukio Watanabe, Tsukasa Hori, Takeshi Kodama, Yutaka Shiraishi, Tatsuya Yanagida, Tsuyoshi Yamada, Taku Yamazaki, Takashi Saitou and other engineers* 



Slide



# Thank you for your Attention.

Any question and Comment is appreciated;

Dr. Hakaru Mizoguchi

SPIE Fellow, Senior Fellow, Gigaphoton Guest Professor, GNGLP-div., Kyushu-Univ.

hakaru\_mizoguchi@gigaphoton.com



Slide 48

Copyright 2021 GAPHOTON INC. all rights reserved.