unec ASML

Progress and Outlook towards High-NA EUV Resist

Jara G. Santaclara, Gijsbert Rispens, Ruben Maas, Rik Hoefnagels, Lidia van Lent, Nadia Zuurbier, Yin Fong Choi, Joost Bekaert, Arame Thiam, Mark Maslow

With contributions from: Chris Anderson, Patrick Naulleau (CXRO); Timothée Allenet, Yasin Ekinci (PSI); Kevin Gu, Da Li, Tim Weidman (Lam)

Timely availability of high-NA ecosystem is needed

Slide 3 2021 EUVL Workshop

ASML

Holistic optimization driven by stochastics, high resolution and low thickness

Motivated by anamorphic imaging with tightened resolution and novel absorbers

High-NA resist requires holistic optimization driven by stochastics, high resolution and low thickness

ASML

Slide 4 15-Jun-21

High-NA resist requires holistic optimization driven by stochastics, high resolution and low thickness

ASML

Slide 5 15-Jun-21

Resolution improvements shown with NXE:3400 P24 Single exposure achieved at imec

Metric	NXE:3x00 (imec & customer site)		2018	2019	2020	2021
		Resist type	Non-CAR	Non-CAR	Non-CAR	Non-CAR
Imaging Principle	Projection 0.33 NA Free form pupil 	HP13nm Lines and Spaces				
Source	Sn Laser Produced Plasma	Dose [mJ/cm ²]	57	45	39	32
		LWR _{unb} [nm]	3.1	3.0	2.9	3.2
Proven resol.	12nm LS		After etch	After tone	inversion	
Processing infrastructur e	Track: 300mm wafer		24	PZ	24-	+26

"ເກາec ASML

ASML

Slide 6 2021 EUVL Workshop

Continuous resist improvement for Hex. Pillars/CH Progress needed in order to improve both Dose & LCDU performance

Slide 7 2021 EUVL Workshop

Resist screening / optimization for high resolution CH

Slide 8 2021 EUVL Workshop

ASML

P28 CH etch demonstration on NXE towards High-NA Best performance achieved by double exposure LS optimized pupils

Slide 9 2021 EUVL Workshop

Soy nm Soy nm SiN-15nm TiN-10nm Oxide-10nm Substrate

Dose ~ $186mJ/cm^2 \times 2$

umec ASML 🕧npria

Exposure tools overview Berkeley MET5 and PSI IL tools allow ultimate resolution resist testing

Slide 10 2021 EUVL Workshop

Metric	NXE:3x00 (imec & customer site)	Berkeley MET5 (US)	PSI (Switzerland)
Imaging Principle	Projection 0.33 NA Free form pupil 	Projection 0.5 NAFree form pupilCentral obscuration	Interference 'Unlimited' DoFRegular features only
Source	Sn Laser Produced Plasma	Synchrotron	Synchrotron
Proven resol.	12nm LS	7.5nm LS	6nm LS
Processing infrastructure	Track: 300mm wafer	8" track (Sokudo, 200mm wafer)	Manual processing: max. 200mm wafer

PSI and BMET5 screenings towards ultimate resolution Interference Litho (PSI) and frequency doubling (BMET5) for resist testing

ASML

Slide 11 2021 EUVL Workshop

Round Robin on exposure tools for High-NA PSI, Berkeley MET5, NXE:3400 and Intel MET5 tools benchmarking

ASML

Ongoing exposure tools benchmarking 16P32 LS LWR scaling with contrast for the different tools

Slide 15 2021 EUVL Workshop

	PSI	BMET5		NXE:3400		
Illumination	n/a	Monopole	Annular σ=0.35-0.55	Leaf Dip	Dip90Y	
Simulated Contrast	0.93	0.84	0.81	0.85	0.71	
Image						
DtS (mJ/cm ²)	58.3	68.7	65.3	69.5	70.1	
LWR _{unb} (nm)	2.1	1.9	2.2	2.1	2.3	

Follow-up: LWR scaling through pitch across the different exposure tools

Ongoing exposure tools benchmarking 16P32 LS LWR scaling with contrast for the different tools

ASML tok

PAUL SCHERRER INSTITUT

Slide 16 2021 EUVL Workshop

1/ILS (nm)

High-NA resist requires holistic optimization driven by stochastics, high resolution and low thickness

ASML

Slide 17 15-Jun-21

Co-optimization of resist and post processing to improve defectivity and LWR

Reduce blur & chemical (acid, quencher, small building blocks) contributions to stochastics High-NA film thickness requirements (DOF-based) Pattern collapse for 0.5NA exposures on dry developed resist

Dry deposited & Dry developed Lam resist prevents mechanical collapse

ASML

Slide 18 2021 EUVL Workshop

High-NA film thickness requirements (DOF-based) P32nm LS exposures done using pupils with different NILS through focus behavior

Slide 19 2021 EUVL Workshop

2 Pupils

- Iso-NILS pupil → flat through focus
- Low-DOF pupil → higher peak NILS, low DOF

High-NA film thickness requirements (DOF-based) P32nm LS exposures done using pupils with different NILS through focus behavior

Slide 20 2021 EUVL Workshop

Optimization including:

- Resist film thickness
- Peak NILS vs NILS through focus trade-off

High-NA resist requires holistic optimization driven by stochastics, high resolution and low thickness

ASML

Slide 21 15-Jun-21

Manufacturing as a concessing & etch De-scum Shelf life Quality Control ADALE Putity Hard mask ckness Coating Selectivity Particles Resist Underlayer Development Rinse Dissolution Sontaminatio, Posotorion contrast Stability Chemical noise ElectronVield Outeassing Blur 3

Exposure

Low thickness to support high resolution

Co-optimization of resist and post processing to improve defectivity and LWR

Reduce blur & chemical (acid, quencher, small building blocks) contributions to stochastics

Stochastic resist model translates aerial image to 3D resist geometry

ASML Slide 22

ASML TC 2021

Good matching of model output and experimental data 0.33NA model calibration on CAR P40 CH

Slide 23 ASML TC 2021

Notes:

- Model calibration did not include experimental failure rates
- Assuming $CD_{SEM_bias} = 3.3 \text{ nm}$, $LCDU_{SEM+mask} = 0.7 \text{ nm} (3\sigma)$

Reference: Ruben Maas, this workshop

A Stochastic Resist Model Based Comparison of 0.33NA and 0.55NA Lithography Public

0.55NA mitigates photon shot noise, but chemical noise limits final performance ASML

Slide 24 ICSPT-38

Conclusions

Holistic optimization driven by stochastics, high resolution and low thickness

• Resists are improving (RLS): 0.33NA and ultimate resolution exposures

• Film thickness should be optimized with illumination (DOF challenge)

- Reduction of chemical noise is critical
- Stochastics resist modeling is key in order to drive improvements towards High-NA

Call to resist modeling groups for collaboration towards High-NA ecosystem development

jara.garciasantaclara@asml.com

Acknowledgements

All resist suppliers!

Frank Timmermans, Kars Troost, Jo Finders, Jan van Schoot (ASML) Rich Wise, Samantha Tan, Will Wu, Nizan Kenane, Benjamin Kam (Lam) Joern-Holger Franke, Filip Schleicher, Eric Hendrickx (imec) Tasuku Matsumiya, Yuki Fukumura (TOK) Peter De Schepper (Inpria) Anna Lio, Marie Krysak (Intel)

