PAUL SCHERRER INSTITUT

Terry Garvey, Andreas Streun, Yasin Ekinci.

Preliminary Design Considerations for an Electron Storage Ring with Application to EUV Mask Inspection.

EUVL Workshop 2020. PSI showcase session, 2nd November, 2020.

Motivation for this study

- There is a general consensus* within the semiconductor community that EUVL will be the next-generation HVM technique for producing smaller and faster integrated circuits.
- Advances in multi-layer Mo-Si mirrors with high reflectivity (~ 70%) and large bandwidth (~2%) make 13.5 nm the <u>wavelength of choice.</u>
- The development of metrology methods at EUV wavelengths for mask inspection will be indispensable for the success of EUVL.
 - A mask inspection tool (RESCAN) is currently being developed on an SLS beam-line (Y. Ekinci et. al., XIL-09LB), in collaboration with industry.
- However, the development of such an inspection tool only makes sense if a source of EUV radiation, having the **required properties**, can be built and operated in an industrial environment.
- We propose here a **compact** synchrotron radiation source for this purpose.

Presentation outline

- EUV source properties and Accelerator requirements (user specification)
- Storage ring design
 - Linear optics design
 - Non-linear effects
- Choice of undulator (EUV radiation source)
- Concluding remarks
- Not discussed (but already studied)
 - Engineering sub-systems
 - DC magnets
 - Vacuum system
 - Injector linac
 - Radio-frequency system
 - Radiation shielding
 - Injection into storage ring

Required properties of the EUV source

Quantitative specifications

- Wavelength
- Power delivered to mask
- Beam brightness
- Stability in intensity

Qualitative specifications

- Small footprint
- High reliability
- Reasonable cost

13.5 nm ~ 10 mW (\rightarrow flux ~ 1.35 x 10¹⁵ ph/s) 1.4 x 10¹⁸ photons/s/mm²/mrad²/0.1% 0.1%

~ 60 m² (soft boundary condition)
99% scheduled operation time (is this needed?)
Design to minimise

(construction and 'ownership')

Accelerator requirements

- High brightness EUV beam
 - \rightarrow low electron beam emittance (nm-rad range)
- Highly stable electron beam current (10⁻³ range)
 - \rightarrow top-up mode \rightarrow full energy booster synchrotron
- High reliability (>99% availability)
 - \rightarrow design based on mature technology. This in fact is the SLS reliability.

 \rightarrow same requirements as for 3rd generation light sources for research

+compact layout ($\approx 60 \text{ m}^2$) - in general, this is in contradiction with low-emittance.

Mature technology combined with Innovative solutions

- \rightarrow adapt technology of Diffraction Limited Storage Rings
 - \rightarrow multi-bend magnet lattice
- \rightarrow low emittance electron beam
- \rightarrow implementation of undulator \rightarrow high brightness photon beam
- \rightarrow combined function magnets
- \rightarrow small vacuum chamber cross-section with NEG coating
- → arrangement of linac, booster and SR

small footprint

How compact is compact?

- Swiss Light Source building shown on right hand side of picture.
- Building diameter ~ 140 m.
- 2.4 GeV ring with 288 m circumference for a 5.5 nm emittance.
- EUV source would have to be ~ 1/10 of the circumference but with a comparable electron beam emittance.

Mask inspection tool and source (very schematic !!)

R. Rajeev et. al., "Towards a stand alone high throughput EUV actinic mask inspection tool – RESCAN" S.P.I.E. proc. Vol 10145 (2017).

Based on Scanning Coherent Diffractive Imaging

Design and optimization

Main criteria for the optimization procedure:

Reach required performance with acceptable size and minimising costs

Optimization steps:

- Choice of beam energy and undulator periodicity
- Basic storage ring layout and design
- Check single particle and collective beam dynamics
- Booster design (not discussed here but completed)
- 3-D arrangement of storage ring and pre-accelerators
- Storage ring injection (still WIP)
- Design technical sub-systems (vacuum, magnets, RF, injector, undulator, shielding)

Optimisation of beam energy and undulator parameters (A. Wrulich)

Variation of beam current with energy

$$\lambda = \frac{\lambda_u}{2\gamma^2} \left(1 + \frac{K^2}{2} \right)$$

- → for a fixed undulator period length of 16 mm (the range from 8-24 mm has been explored, as well as different undulator lengths)
- → with the boundary condition that the requirements for radiation wavelength and flux are fulfilled.

95 mA required to reach flux requirements. Studies performed for 150 mA to give some margin.

Facility layout

Race-track geometry: Two 5-bend achromat arcs and two straights. One straight for the undulator and one for injection and RF.

- Ring: 430 MeV, 25.8 m
- Booster: $43 \rightarrow 430$ MeV, 24.0 m
- BR transfer line –18.6° inclination
- LB transfer line
- Gun/Linac: 43 MeV, 2.1 m

Lattice features

- Strong horizontal focussing: strong quads → small magnet bore; strong sextupoles to correct chromaticity.
- Modest dispersion (MBA) ensures adequate momentum acceptance despite small vac. aperture
 → needed to reduce particle loss to Touscheck scattering.
- •Skew-quad windings in sextupole to generate some vertical emittance \rightarrow reduce Touscheck scattering.
- •Small β_x at center of undulator \rightarrow minimise source-point size \rightarrow high brightness.
- β_v reduced at undulator extremities to reduce particle losses (small vertical gap 7 mm).
- Magnetic elements would be installed / aligned on girders. Simulations show orbit correction due to misalignments (< 100 μm, < 100 μrad) easily corrected with 1 mrad correction coils.

PAUL SCHERRER INSTITUT

Nominal storage ring parameters

Circumference [m]	25.8	Energy [MeV]	430
Working Point $Q_{x/y}$	4.73 / 1.58	Radiation loss/turn [keV]	2.83
Natural chromaticities ξ _{x/y}	-9.7 / -6.9	Emittance [nm]	5.50
Momentum compaction α_c	0.0258	Relative energy spread	4.13.10-4
Hor. damping partition J _x	1.54	Damping times $\tau_{x/y/E}$ [ms]	16.6 / 25.6 / 17.5

Machine length corresponds to 43 RF wavelengths (500 MHz). 24 "buckets" are filled to leave a gap in the bunch train to combat the effects of trapped ions.

Non-linear beam dynamics studies have been done to evaluate: Dynamic aperture ✓ greater than physical aperture Touscheck scattering → 400 kV RF voltage needed to optimise life-time Intra-beam scattering → modest emittance dilution.

Beam life-times of ~ 15 minutes calculated \rightarrow Top-up frequency > 1 Hz to maintain 0.1% intensity stability.

SCHERRER		INSTITUT	
\exists	7		

- Design based on undulator assemblies for SLS and SwissFEL.
 - Field on axis = 0.42 T, λ_u = 16 mm, gap = 7 mm (fixed in operation).
 - Good field region = \pm 12 mm
 - Magnetic material: NdFeB with diffused Dy \rightarrow good combination of B_r and H_c

 \rightarrow less sensitive to demagnetisation caused by beam loss (i.e. radiation hard).

Produces flux / brightness required for mask inspection at 13.5 nm (92 eV),

 \rightarrow next slide.

U15 undulator for SwissFEL / ARAMIS

Engineering sub-systems studied

500 MHz power source

http://accapp17.org/wp-content/uploads/2017/09/AppAcc-paper.pdf

vacuum chamber

ELETTRA RF cavity

Shielding calculations

Summary and conclusion:

Conceptual design and technical systems studied

- Optimization undulator / storage ring \checkmark
- Conceptual design of storage ring and its hardware
 - Lattice design
 - layout & performance ✓
 - non-linear dynamics
 - beam lifetime ✓
 - − ion trapping ✓
 - injection & extraction
 - Undulator 🗸
 - − DC-Magnets ✓
 - − RF-systems 🗸
 - Vacuum system 🗸
 - Radiation shielding ✓

We believe that a compact, high-brightness EUV source, based on existing mature technology, for actinic mask inspection is a viable prospect.

Early design work on the EUV ring was performed by Albin Wrulich, Lenny Rivkin and YE.

Our thanks go to Advanced Accelerator Technologies for their contribution to 3-D integration studies.

We acknowledge contributions to this study from our colleagues;M. Aiba. R.M. Bergmann, T. Bieri, P. Craievich, M. Ehrlichman, C. Gough, Ph. Lerch,A. Mueller, M. Negrazus, C. Rosenberg, L. Schulz, L. Stingelin, A. Streun, V. Vrankovic,A. Zandonella Gallagher, R. Zennaro.

We thank the Swiss **C**ommission for **T**echnology and **I**nnovation for financial support under grant # 19193.1PFNM-NM .

Many thanks to you all for your attention!