High-brightness Light Source Based on a New Concept of LPP for Actinic EUV microscopy and Metrology Applications

Konstantin Koshelev, Alexander Vinokhodov, Oleg Yakushev, Yuri Sidelnikov, Vladimir Ivanov, Vladimir Krivtsun, Alexander Lash, Dimitri Abramenko, Mikhail Krivokorytov, Vyacheslav Medvedev, Denis Glushkov, Pavel Seroglazov, Samir Ellwi
Outline

1. Source requirements and how to achieve them
2. New concept of LPP source: the key idea
3. EUV source parameters
4. Examples of source operation
5. Conclusions
Source requirements and how to achieve them

General source requirements

- EUV “inband” emission, i.e. 13.5 nm ± 1%
- High inband brightness (100 ..500 W/mm²-Sr)
- Etendue 5e-4…1e-2 mm²-Sr
- Energy stability <3.5%(3σ) pulse-to-pulse
- Stability of plasma position < 3% of the source size
- High rep-rate, >10 kHz
- Cleanliness 100% (debris containment must be included in the source)
- Safe, full automation
- Availability / Reliability (> 90% uptime)

Rotating liquid metal target

- Renewable target
- Extremely stable
- Continuous target → no synchronization needed
High rotation speed allows high rep-rate operation.

Perturbed target surface

Unperturbed target surface

Target rotation frequency

@30kHz laser

3 mm
High rotation speed allows completely suppress droplet debris

Droplets are being dragged by the target motion (V_{target})
New concept of LPP source: advantages

- High rotation frequency allows high rep-rate operation
- Extremely high target speed provides the protection from droplet debris
- Protection from plasma debris (fast ions and neutrals) is provided by counter gas flows and magnetic field
- The use of tin, its alloys and also lithium as target material ensures high values of conversion efficiency
The recent results: summary table

Ytterbium pulsed fiber laser, IPG Photonics, YLPP-1-150V-30
Target Sn/In eutectic alloy

<table>
<thead>
<tr>
<th>Laser</th>
<th>Frequency, kHz</th>
<th>Duration, ns</th>
<th>Energy, mJ</th>
<th>CE, %</th>
<th>Source size, µm</th>
<th>B, W/mm²sr</th>
</tr>
</thead>
<tbody>
<tr>
<td>T4</td>
<td>30</td>
<td>3.99</td>
<td>0.89</td>
<td>0.6</td>
<td>26</td>
<td>50</td>
</tr>
<tr>
<td>T3</td>
<td>60</td>
<td>1.85</td>
<td>0.44</td>
<td>0.5</td>
<td>22</td>
<td>60</td>
</tr>
<tr>
<td>T2</td>
<td>100</td>
<td>1.07</td>
<td>0.27</td>
<td>0.3</td>
<td>22</td>
<td>30</td>
</tr>
<tr>
<td>T1</td>
<td>600</td>
<td>0.18</td>
<td>0.04</td>
<td>0.05</td>
<td>16</td>
<td>10</td>
</tr>
</tbody>
</table>

30 W average power
Examples of source operation: dose stability

Pulse trains

T4, 30 kHz

T3, 60 kHz

T2, 100 kHz

Dose stability, T4

Dose – 128 pulses, for each dose the average CE is calculated. \(\delta \text{CE}/\text{CE} \sim 0.5\%. \) Recording rate 1/s.
Examples of source operation: debris mitigation

The witness samples (Si wafer) at output window

Before operation

After 2·10^8 shot

Input window, high rotation frequency

Before operation

After 2·10^8 shot

No noticeable contamination, no changes in transparency

Target rotation frequency

10 Hz

100 Hz

Examples of source operation: debris mitigation

In progress: long term runs, 24/7

2018 Source Workshop, November 5-7, 2018, HiLASE, Prague, Czech Republic
Examples of source operation: spatial stability

- 45° Zr/Si multilayer mirror
- Laser
- 33°
- Zr/Si filter
- Pinhole

Pinhole EUV image, integrated over ~21k pulses

Corresponds to 22 µm source size

Center of mass displacement, STD <1% of plume size

Plasma plume image in visible range (recorded by CCD with telescope)

Andor DX440-BN

300 µm
The recent results and optimal laser parameters

Ytterbium pulsed fiber laser, IPG Photonics, YLPP-1-150V-30
Target Sn/In eutectic alloy

<table>
<thead>
<tr>
<th>Laser</th>
<th>Duration, ns</th>
<th>Energy, mJ</th>
<th>CE, %</th>
<th>Power density, W/cm²</th>
<th>B, W/mm²sr</th>
</tr>
</thead>
<tbody>
<tr>
<td>T4</td>
<td>3.99</td>
<td>0.89</td>
<td>0.6</td>
<td>4.9e10</td>
<td>50</td>
</tr>
<tr>
<td>T3</td>
<td>1.85</td>
<td>0.44</td>
<td>0.5</td>
<td>5.2e10</td>
<td>60</td>
</tr>
<tr>
<td>T2</td>
<td>1.07</td>
<td>0.27</td>
<td>0.3</td>
<td>5.5e10</td>
<td>30</td>
</tr>
<tr>
<td>T1</td>
<td>0.18</td>
<td>0.04</td>
<td>0.05</td>
<td>5.7e10</td>
<td>10</td>
</tr>
</tbody>
</table>

CE to be increased by power density

Emission spectrums at different power densities

Nd:YAG, 3e11 W/cm²
CE = 2%

T4, T3, T2, T1, ~5e10 W/cm² low CE
Conclusion

• We have proposed the new concept of LPP based on extremely fast-rotating liquid target.
• High rotation frequency (up to 400 Hz) of the target provides protection from droplet debris.
• Employing proven protection from ions and neutrals, we have demonstrated that optical windows (input laser and output EUV) stay clean after 2×10^8 shots.
• Stability of plasma position and the dose lie in the range of required specification for inspection applications.

• Brightness scaling with power:

$$B = \frac{P_{\text{laser}} \cdot CE}{2\pi \cdot (\pi d^2 / 4)}$$

where P_{laser} – average laser power, conversion efficiency CE, and d is source size; assuming laser provides power density $>1\times10^{11}$ W/cm2, i.e. $CE = 2\%$.

Then brightness would be:

- $10 \cdot P_{\text{laser}}$ @ 20 μm source
- $4.5 \cdot P_{\text{laser}}$ @ 30 μm source
- $1.6 \cdot P_{\text{laser}}$ @ 50 μm source
Thank you for attention

Address:
108840 Moscow, Troitsk, Promyshlennaya 2B, Russia
Tel.: +74956656501; +79166861316
E-mail: alexander_lash@rnd-isan.ru; info@rnd-isan.ru

Address:
108841 Moscow, Troitsk, Sirenevy bulvar Str., 1, Russia
Tel.: +7 (926) 146-87-86
E-mail: enquiry@euvlabs.net

Address:
Eindhoven, The Netherlands, High Tech Campus 9, 5656 AE
Tel.: +31(0)40-230-42-42
E-mail: info@isteq.nl