A SHARP LOOK AT FUTURE NODES OF EUV LITHOGRAPHY

SHARP High-NA actinic Reticle Review Project

Markus Benk, Weilun Chao, Ryan Miyakawa, Kenneth Goldberg, Patrick Naulleau

2018 International Workshop on EUV Lithography
Lawrence Berkeley National Lab, Berkeley, June 13
<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>Synchrotron</td>
</tr>
<tr>
<td>Optics</td>
<td>Zoneplate lenses</td>
</tr>
<tr>
<td>4×NA</td>
<td>0.25–0.625</td>
</tr>
<tr>
<td>Sigma</td>
<td>Programmable</td>
</tr>
<tr>
<td>Navigation</td>
<td>2-μm position accuracy</td>
</tr>
<tr>
<td>Throughput</td>
<td>up to 24 sites/hour</td>
</tr>
</tbody>
</table>
Source angular spectrum

Aperture
Fourier synthesis illuminator

Zoneplate lens
Illuminator angular range

- 0.625 4xNA
- 10° CRA
- σ=0.8

σ=1 outline
Pupil fill

- Conventional
- 0.33 4xNA, 6° CRA

Liu, SPIE 90480Q (2014)
Pupil fill

- Crosspole
- 0.33 4xNA, 6° CRA

Liu, SPIE 90480Q (2014)
Pupil fill

- Crosspole
- 0.33 4xNA, 6° CRA

Liu, SPIE 90480Q (2014)

Modulation of flux in pupil channels
Pupil fill

- Quasar
- 0.33 4xNA, 6° CRA

Liu, SPIE 90480Q (2014)
Pupil fill

- Freeform Source
- 0.33 4xNA, 6° CRA

Pupil diagram
- Gold pattern on Si$_3$N$_4$-membranes
- Magnetic mounting
- Kinematic positioning
Zoneplates

Standard Zoneplates:
- 0.25 to 0.625 4xNA
- 6° to 10° CRA
- 5 azimuthal angles

Chip B
- Zernike Phase Contrast
- Differential Interference Contrast
- Stereoscopic imaging
- Cubic Phase Modulation

0.625 4xNA:
- 22-nm hp resolution on the mask
- 5.5 nm hp resolution wafer scale (for a 4x system)
Zoneplates

Standard Zoneplates:
- 0.25 to 0.625 4xNA
- 6° to 10° CRA
- 5 azimuthal angles

Chip B
- Zernike Phase Contrast
- Differential Interference Contrast
- Stereoscopic imaging
- Cubic Phase Modulation

Chip C
- Elliptical zoneplates
Thin-absorber wafer mask

40-nm Nickel absorber
Chrome
Ruthenium
Mo/Si Multilayer
Silicon wafer

Thin-absorber wafer mask
Comparison of absorbers

Future Study
- Two photomasks with identical patterns
- Mask SEM characterization
Comparison of absorbers

Initial Study

- Identify comparable patterns on available photomasks
Patterns

- 0.33 4x NA
- Quasar illumination
- 22.5 nm CD (1x)

- 200 nm (1x)
- Ta-based
- Nickel
Patterns

- 0.55 4x/8x NA
- Quasar illumination
- 12.5 nm CD (1x)

- Ta-based V
- Ta-based H
- Nickel
Contrast and NILS

- Ta-based
- Nickel
- 200 nm (1x)
- 22.5 nm CD (1x)
- 0.33 4x NA
- Quasar illumination
Contrast and NILS

- Ta-based
- Nickel
- 0.33 4x NA
- Quasar illumination
Contrast and NILS

0.33 4xNA:
- higher on vertical features

- 0.33 4x NA
- Nickel
Contrast and NILS

- 200 nm (1x)
 - 0.33 4x NA
 - higher contrast in V

- 100 nm (1x)
 - 0.55 4x/8x NA
 - higher contrast in H
Contrast and NILS

- 0.33 4x NA
- higher contrast in V

- 0.55 4x/8x NA
- higher contrast in H
Optimized source

- 0.33 4xNA, regular mask
- balanced Quasar

- 0.33 4xNA, regular mask
- imbalanced Quasar
Optimized source

- 0.33 4xNA, Ta-based balanced Quasar

- 22.5 nm CD (1x)
- 200 nm (1x)

- 0.33 4xNA, Ta-based imbalanced Quasar
Optimized source

Imbalanced Quasar:
- higher NILS for both grating orientations
- wider focus range
Source Optimization

- Pupil Channel α
Source Optimization

- Pupil Channel α
- Image i_α
Source Optimization

- Pupil Channel α
Source Optimization

- Pupil Channel α

- Image i_α
Source Optimization

- Pupil Channel α
- Image i_a
Source Optimization

- Pupil Channel α
- Image i_α
Source Optimization

- Pupil Channel α
- Image i_{α}
Source Optimization

- Pupil Channel α
- Image i_α
Source Optimization

- Pupil
Source Optimization

- Pupil

- Image $I = i_a$
Source Optimization

- Pupil

- Image $I = \sum_i a_i$
Source Optimization

- Pupil

- Image $I = \sum_{a} i_a$
Source Optimization

- Quasar

- 40-nm (1x) dense contacts
Source Optimization

- Quasar

- 40-nm (1x) dense contacts
Source Optimization

- Quasar
- Freeform Source

- 40-nm (1x) dense contacts
Source Optimization

- Quasar
- Freeform Source
- 40-nm (1x) dense contacts
Summary

SHARP High-NA Actinic Reticle Review Project

- Emulation of imaging in EUV scanner
- Emulation of anamorphic imaging
- Increased imaging performance with thinner absorber both for 0.33 and 0.55 anamorphic
- Source Optimization demonstration
Thanks to our users.

Thanks to INTEL for funding SHARP operations.

EUV infrastructure at Berkeley is funded through the EUREKA program.
Thanks to our users.

Thanks to INTEL for funding SHARP operations.

Thank you!
AIS: Characterization of aberrations

- Through-focus image data of 4 grating orientations and 12 monopole illuminations

\[\Delta f \]

- Aberrations solved from measured focus shifts using least-squares approach

90° (3 points)

0° (3 points)

135° (3 points)

45° (3 points)
Field dependent aberrations

- Ideal 0.33 4xNA zoneplate
- AIS measurement

Sweet spot (Z_4 to Z_8) : $7.2 \text{ m}\lambda$ RMS ($\lambda_{\text{EUV}}/139$)
Field dependent aberrations

Latest measurement
Sweet spot (Z_4 to Z_8): \(4.4 \text{ m} \lambda\) RMS

- Ideal 0.33 4xNA zoneplate
Programmed aberrations

Astigmatism zoneplate

Coma zoneplate

Spherical aberration zoneplate

Mixed Zernike zoneplate
Programmed aberrations

Astigmatism zoneplate

RMS error: 3.2 mλ (0.043 nm)

Coma zoneplate

RMS error: 4.1 mλ (0.055 nm)

Spherical aberration zoneplate

RMS error: 5.2 mλ (0.070 nm)

Mixed Zernike zoneplate

RMS error: 4.8 mλ (0.065 nm)