MTR Resist for Reduced LER in EUV Lithography

C. Popescua,b, A. McClellandc, J. Rothd, W. Theisa, Y. Ekinci,c A.P.G. Robinsonb,d

aSchool of Physics and Astronomy, University of Birmingham, UK
bSchool of Chemical Engineering, University of Birmingham, UK
cIrresistible Materials, Birmingham Research Park, Birmingham, UK
dLaboratory for Micro and Nanotechnology, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
eNano-C, 33 Southwest Park, Westwood, MA, USA
Background to Irresistible Materials

• Irresistible Materials is a UK spin-out company formed to commercialise university research in materials for semiconductor fabrication such as resist and spin-on-carbon

• Developing a new molecular resist system that demonstrates high-resolution capability based on the multi-trigger concept
RLS Control

Increased Quencher Loading
Higher Tg
Reduced Acid diffusion length
Traditional Chemically Amplified Resist (CAR)

Traditional Chemical Amplification

Unexposed → Reacting → Exposed

H⁺ + H⁺
Multi Trigger Resist (High dose areas – center of features)

Unexposed A → Activated A → Reacting A
Unexposed B → Activated B

Exposed

H^+ → H^+ → H^+ → H^+
Multi Trigger Resist (Low dose areas – feature edges)

Molecules A and B too far apart to react. Initiators quenched and reaction stops.
IM Multi-Trigger EUV Resist

The Irresistible Materials Multi-Trigger resist is a negative tone molecular resist, based on a proprietary resin (xMT).

Coating is from standard industry casting solvents, and development is in accepted negative tone developers including n-butyl acetate. Standard etch processes are applicable.
EUV exposure - PSI

Swiss Light Source

Interference Lithography
Improving Line Edge Roughness

Causes
• Pattern collapse
• Microbridging
• Resist mechanical strength
• Resist Stochastics

Approaches
• Increase multi-trigger component
• Increase crosslinking groups
• Addition of high Z sensitizer
• Optimize the film thickness
• Optimize the MTR ratio
The incorporation of quencher is typically at low concentration and contributes significantly to material stochastic variability.

<table>
<thead>
<tr>
<th>Stochastic Term(s)</th>
<th>Modeled LWR (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photon</td>
<td>1.9 ± 2%</td>
</tr>
<tr>
<td>Acid</td>
<td>0.9 ± 2%</td>
</tr>
<tr>
<td>PAG</td>
<td>0.6 ± 2%</td>
</tr>
<tr>
<td>Quencher</td>
<td>1.8 ± 2%</td>
</tr>
<tr>
<td>Protecting Groups</td>
<td>0.2 ± 2%</td>
</tr>
<tr>
<td>ALL</td>
<td>2.9 ± 2%</td>
</tr>
</tbody>
</table>

2.2 nm

Multi-Trigger Component Ratio

MTR2, no Quencher, varying MTR component ratio, p32, dose v CD

<table>
<thead>
<tr>
<th>CD/nm</th>
<th>Dose (mJ/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>14.5</td>
<td>20</td>
</tr>
<tr>
<td>15</td>
<td>40</td>
</tr>
<tr>
<td>15.5</td>
<td>60</td>
</tr>
<tr>
<td>16</td>
<td>80</td>
</tr>
<tr>
<td>16.5</td>
<td>100</td>
</tr>
</tbody>
</table>

MTR3, no Quencher, varying MTR component ratio amended to match # of MTR2, p32 dose v CD

<table>
<thead>
<tr>
<th>CD/nm</th>
<th>Dose (mJ/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>0.2</td>
</tr>
<tr>
<td>14.5</td>
<td>0.4</td>
</tr>
<tr>
<td>15</td>
<td>0.6</td>
</tr>
<tr>
<td>15.5</td>
<td>0.8</td>
</tr>
<tr>
<td>16</td>
<td>0.2</td>
</tr>
<tr>
<td>16.5</td>
<td>0.4</td>
</tr>
<tr>
<td>17</td>
<td>0.6</td>
</tr>
<tr>
<td>17.5</td>
<td>0.8</td>
</tr>
<tr>
<td>18</td>
<td>0.2</td>
</tr>
<tr>
<td>18.5</td>
<td>0.4</td>
</tr>
<tr>
<td>19</td>
<td>0.6</td>
</tr>
<tr>
<td>19.5</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Table

<table>
<thead>
<tr>
<th>MTR2 ratio</th>
<th>LER/nm</th>
<th>Dose (mJ/cm²)</th>
<th>MTR3 ratio</th>
<th>LER/nm</th>
<th>Dose (mJ/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>6.5</td>
<td>23.3</td>
<td>0.2</td>
<td>5.9</td>
<td>13.8</td>
</tr>
<tr>
<td>0.4</td>
<td>4.8</td>
<td>36.6</td>
<td>0.4</td>
<td>4.8</td>
<td>33.9</td>
</tr>
<tr>
<td>0.6</td>
<td>5.1</td>
<td>53.0</td>
<td>0.6</td>
<td>4.6</td>
<td>45.2</td>
</tr>
<tr>
<td>0.8</td>
<td>6.1</td>
<td>66.5</td>
<td>0.8</td>
<td>4.7</td>
<td>61.0</td>
</tr>
</tbody>
</table>
Effect of quencher on LER

Effect on dose of changing MTR ratio and quencher level

Effect on LER of changing MTR ratio and quencher level

- 14nm and 18nm lines patterned at relaxed pitch to minimise bridging
- Increasing MTR ratio increases dose – large range achievable
- Adding quencher has larger effect on LER for low MTR ratio, and negligible effect on LER at high MTR ratio
- Best LER occurs with 5% quencher loading at 0.46 ratio, 0.23 ratio similar
Low MTR action – increasing quencher improves LWR (PSI)

MTR1220
- No quencher
 - 30.4mJ/cm²
 - CD 16.4nm
 - LWR 6.08nm

MTR1230
- Low level quencher
 - 45.3mJ/cm²
 - CD 15.8nm
 - LWR 4.07nm

MTR1200
- High level quencher
 - 59.7mJ/cm²
 - CD 16.2nm
 - LWR 3.36nm

Increasing dose
Decreasing LWR
Higher MTR action – towards Multi-Trigger at PSI

Low MTR action
- Increasing MTR
- Increasing dose
- Decreasing LWR

Higher MTR action
- Increasing MTR
- Increasing dose
- Decreasing LWR

No quencher
- **MTR1220**
 - Dose to size 30.4mJ/cm²
 - LWR 6.1nm
- **MTR1250**
 - Dose to size 38mJ/cm²
 - LWR 4.8nm

Low level quencher
- **MTR1230**
 - Dose to size 45.3mJ/cm²
 - LWR 4.07nm
- **MTR1240**
 - Dose to size 45mJ/cm²
 - LWR 4.1nm

High level quencher
- **MTR1200**
 - Dose to size 59.7mJ/cm²
 - LWR 3.36nm
- **MTR2211**
 - Dose to size 47mJ/cm²
 - LWR 2.5nm

Increasing MTR
- Increasing dose
- Decreasing LWR

Decreasing LWR
- Increasing MTR
- Increasing dose
- Decreasing LWR
Conclusions

• Material stochastics has an important effect on the LER of the structures printed.
• Optimizing the MTR ratio significantly reduces the LER.
• Quenching effect on LER saturates for high MTR ratio.
Acknowledgements

Viktor Vejins, Tom Lada, Xiang Xue
Nano-C

David Ure, Alan Brown, Mark Shepherd, Warren Montgomery
Irresistible Materials

Michaela Vockenhuber, Dimitrios Kazazis
Paul Scherrer Institute, Switzerland