Coherent EUV imaging and metrology with high-harmonic generation sources

Stefan Witte

Advanced Research Center for Nanolithography (ARCNL) Vrije Universiteit Amsterdam

ADVANCED RESEARCH CENTER FOR NANOLITHOGRAPHY

Metrology challenges in nanolithography

- Next-generation lithographic devices are multilayer, often 3D structures
- Such devices may contain many different materials, many of which optically opaque
- Relative position of layers is crucial for device performance

This raises interesting questions:

- How do you 'look through' opaque layers?
- What produces contrast on specific objects inside such a device?
- Non-invasive 3D nano-imaging of partially opaque structures?

3D NAND Structure

Interesting properties of EUV radiation (for metrology)

1) Short wavelength \rightarrow diffraction from nanoscale objects

3) High photon energy \rightarrow provides access to core levels

H. Stiel et al., MBI Berlin

2) Element-selectivity \rightarrow most elements have specific spectral transmission windows

Imaging and metrology with EUV sources

EUV-based metrology may have the capability to meet future wafer metrology needs:

- shorter wavelength \rightarrow sensitive to smaller pitch structures
- ability to penetrate metals/semiconductors

- Applications in CD metrology, overlay on device, and imaging of non-periodic device structures
- Needs >µW flux in a coherent beam
- Optimum wavelength range 2-20 nm

High harmonic generation

Laser modifies Coulomb potential \rightarrow electron tunnels and accelerates

Field changes sign \rightarrow electron Recollision, electron energy returns to the parent ion converted into EUV photon

- Compact source of fully coherent EUV radiation
- >nJ/pulse, ~kHz rep. rate $\rightarrow \mu W$ flux (sufficient for metrology apps)
- Process driven by an intense ultrafast laser source (mJ, fs pulses)

High harmonic generation

Laser modifies Coulomb potential \rightarrow electron tunnels and accelerates

Field changes sign \rightarrow electron Recollision, electron energy returns to the parent ion converted into EUV photon

Typical spectra:

Lensless coherent diffractive imaging

Numerical reconstruction of an object from a coherent diffraction pattern, instead of the use of optical components for image formation:

Measured diffraction yields intensity, phase also needed for image reconstruction

 \rightarrow The challenge is to retrieve the missing phase information.

- Resolution = $\lambda / 2 \sin \theta$
- High spatial and temporal coherence important.

Bandwidth limitations in lensless imaging

- Diffraction angle is directly proportional to wavelength.
- Broadband sources lead to blurred diffraction patterns:

Monochromatic:

Broadband:

- Limits the resolution, in extreme cases prevents image reconstruction.
- Spectral filtering is possible, but at the cost of serious flux reduction.

Bandwidth limitations in lensless imaging

- Diffraction angle is directly proportional to wavelength.
- Broadband sources lead to blurred diffraction patterns:

Monochromatic:

Broadband:

- Limits the resolution, in extreme cases prevents image reconstruction.
- Spectral filtering is possible, but at the cost of serious flux reduction.

EUV spectroscopy

Diffractive grating-based spectrometer: use diffraction to disperse different wavelengths over a spatial axis.

Fourier-transform spectroscopy: measure temporal coherence function and retrieve frequency information by Fourier transform.

EUV interferometry

HHG setup combined with ultra-stable common-path interferometer:

- HHG in Argon with >1 mJ ~20 fs pulses
- Individual pulses should not influence each other during the HHG process → spatially separated HHG zones.
- Collinear beams, overlap after finite distance due to beam divergence.

HHG Fourier transform spectroscopy

- Fourier transformation of the time delay scan on a single pixel yields the spectrum at the location of that pixel.
- Linear autocorrelation of two HHG beams yields coherence length.
- Measured 0.8 as RMS timing stability between the two pulses (0.25 nm optical path length).

HHG-FTS in Neon:

G.S.M. Jansen et al., Optica **3**, 1122 (2016)

Spatially resolved EUV spectroscopy

Titanium layer on 250x250 μ m silicon nitride foil with a 50 μ m reference aperture:

- Detecting Neon HHG spectrum on each CCD pixel using FTS
- Measurement of the transmission spectrum in the 17-55 nm range

G.S.M. Jansen et al., Optica **3**, 1122 (2016)

Two-pulse Fourier-transform imaging

- Combination of imaging and Fourier transform spectroscopy
- On each CCD pixel, a Fourier-transform spectrum is recorded of the light diffracted onto that specific pixel.

- Allows reconstruction of 'monochromatic' diffraction patterns for all spectral components
- The full spectrum is used throughout the entire measurement.

Witte, Tenner, Noom, Eikema, Light: Sci. Appl. **3**, e163 (2014)

High-resolution, spectrally resolved EUV imaging

- Fourier transform spectroscopy retrieves well-defined monochromatic diffraction patterns
- Image reconstruction from these patterns yields diffraction-limited images

SEM image:

Broadband diffraction:

Reconstructed pattern (from FTS)at λ =33 nm:

Retrieved object images for different harmonics:

G.S.M. Jansen, A. de Beurs, K. Liu, K.S.E. Eikema, S. Witte, Opt. Express 26, 12479 (2018)

Diffractive shear interferometry

Our diffraction pattern is produced by two displaced coherent beams, so we measure: $I = |E(k) + E(k + \Delta k)|^2$ $= A(k)^{2} + A(k = \Delta k)^{2} + A(k)A(k + \Delta k) \exp[i\varphi(k + \Delta k) - \varphi(k) + \omega T] + c.c.$ Phase information! After FTS and selecting one spectral $I = A(k)A(k + \Delta k) \exp[i\varphi(k + \Delta k) - \varphi(k)]$ component we retrieve: Reconstruction Single-beam CDI **Diffractive Shear Interferometry** error Error 500 1000 1500 Iterations Error 500 Ω 1000 1500 Iterations

EUV imaging of more complex objects

'Grayscale' intensity objects lead to more complex diffraction patterns:

Measured diffraction pattern ($\lambda =$ 30 nm):

- Good contrast reconstruction, both amplitude and phase.
- Resolution near diffraction limit of 0.25 μ m

G.S.M. Jansen, A. de Beurs, K. Liu, K.S.E. Eikema, S. Witte, Opt. Express **26**, 12479 (2018)

Conclusions

High harmonic generation is a compact and versatile source of coherent EUV radiation for metrology

• EUV-based metrology is a potentially interesting tool for litho applications

• The broad bandwidth of HHG sources allows spectroscopic characterization (identification) of materials

Spectrally resolved lensless EUV imaging is possible through coherent diffractive (lensless) imaging techniques

