

a DOE-funded nanoscience research facility that provides users from around the world with free* access to cuttingedge expertise and instrumentation in a collaborative, multidisciplinary environment

Seven collaborative facilities provide users with unique research resources:

Organic and Macromolecular Synthesis Facility studies "soft" materials, including the synthesis of organic molecules, macromolecules, polymers and their assemblies, with access to functional systems, photoactive materials, organic-inorganic hybrid structures, and porous materials.

Biological Nanostructures FacilityThis facility designs and synthesizes new materials based on the self-assembly of biopolymers and bio-inspired polymers, creates new nanocrystal probes for bioimaging, and develops synthetic biology techniques to re-engineer organisms and create hybrid biomolecules to interface with a variety of applications.

Inorganic Nanostructures Facility is devoted to the science of semiconductor, carbon and hybrid nanostructures—including design, synthesis, and combinatorial discovery of nanocrystals, nanowires, and nanotubes and their self-assembly into 3D mesoscale functional materials for use-inspired energy applications.

Theory of Nanostructured Materials Facility expands our understanding of materials and phenomena at the nanoscale through development and application of theories and methods for excited-state and charge transport at nanoscale interfaces, self-assembly of nanostructures, and X-ray spectroscopy in complex nanostructured systems.

Nanofabrication Facility focuses on understanding and applying advanced lithographies, thin film deposition, and characterization, emphasizing integration of inorganic, organic, and biological nanosystems with the potential for nanoelectronic, nanophotonic, and energy applications.

Imaging and Manipulation of Nanostructures Facility develops and provides access to state-of-the-art characterization and manipulation of nanostructured materials – from "hard" to very "soft" matter – including electron, optical, and scanning probe microscopies.

National Center for Electron Microscopy (NCEM) focuses on the cutting-edge instrumentation, techniques and expertise required for advanced electron beam characterization of materials at high spatial resolution.

The Molecular Foundry user program gives researchers free* access for up to one year and is open to scientists from academia, industry, and research institutes worldwide through a brief, peer-reviewed proposal.

MOLECULAR FOUNDRY

*for non-proprietary research