

A Study of EUV/SXR/XR Grazing Incidence Collectors for Metrology Sources

Ladislav Pina^{1,3}, Adolf Inneman³, Andrzej Bartnik², Henryk Fiedorowicz², Alexandr Jancarek¹ and Mchal Nevrkla¹

¹Czech Technical University, Prague

²Institute of Optoelectronics, Military University of Technology, Warsaw

³Rigaku Innovative Technologies Europe, Prague

Electromagnetic radiation spectrum

D. T. Attwood *Soft X-rays and Extreme Ultraviolet Radiation: Principles and Applications* (Cambridge University Press, Cambridge, 1999)

13.5 nm / 92 eV

EUV Lithography

6.2 nm / 200 eV

BEUV Lithography

2.34 - 4.39 nm / 283 - 531 eV

Water Window Microscopy

5 - 17 keV

X-ray Microscopy

Microscopy

Tomography

Grazing Incidence (GI) replicated X-Ray Optics 47 years of research and development in Prague

Replication Technology for X-ray Optics Manufacturing

Mandrels used for the manufacture of X-ray mirrors (Glass ceramics Sital, Acad of Sci, Prague, 1969)

Replicated X-ray mirrors (hyperbolas, Ni surfaces, Acad of Sci, Prague)

History – milestones and examples of projects

(Academy of Science, Czech Technical University, Reflex, Rigaku)

- 1969 First considerations started
- 1970 First X-ray mirror produced (Wolter 1, 50 mm)
- 1971 Wolter 1, 80 mm
- 1976 Wolter 1, 115 mm
- 1979 First mirrors flown in space (two Wolter 50 mm, Vertikal 9 rocket)
- 1980 Vertikal 11 rocket (two Wolter 50 mm)
- 1981 First large Wolter mirror (240 mm)
- 1981 Salyut 7 orbital station (Wolter 240 mm nested)
- 1985 Applications for plasma physics, EH 17 mm, PP 20 mm
- 1987 First high quality X-ray foils for foil mirror X-ray telescope (SODART)
- 1988 Fobos 1 Mars probe, TEREK X-Ray Telescope
- 1989 KORONAS I X-ray mirror, Wolter 80 mm
- 1990 First Micromirror (aperture less than 1 mm, Bede Ltd.)
- 1993 Collaboration with SAO, USA, WF X-ray optics started
- 1996 First Lobster Eye test module produced, Schmidt geometry
- 1997 Double-sided X-ray reflecting flats (SAO MA USA, CTU Prague)
- 1997 Lobster Eye Angel geometry project started
- 1999 First Lobster Eye test module produced, Angel geometry
- 2001 Thin segmented X-ray mirrors
- 2005 Replicated Image Slicers for LEO, EU FP6 projects, Cambridge
- 2006 MFO Kirkpatrick-Baez optic, University of Boulder, CO, NASA, USA
- 2007 Innovative technologies for X-ray telescopes, PECS, ESA XEUS projects
- 2008 2016 EUV/BEUV/WW/SXR/XR Grazing Incidence mirrors ...

Examples of Imaging GI X-ray optics

X-ray image of the laser plasma by the 17 mm EH microscope (IPPLM Warsaw)

Applications for plasma physics (EH 17 mm, PP 20 mm)

19881989

FOBOS 1 Mars probe, TEREK X-ray telescope

KORONAS I (Wolter 80 mm)

Replication technology

- Replication technology developments in the Czechoslovak Acad. of Sci.,
 National Research Institute for Materials (1969)
 - 2-3 mirrors from one master
- Improvement of replication technology:
 - less damage of mandrel
 - reduced weight
- Laboratory and space applications
 - Wolter objectives 17 mm and 20 mm dia
 - EH Wolter used (1985) for taking photographs of laser plasma in Institute of Plasma Physics and Laser Microfusion in Warsaw

- a master,
- b master with electroformed nickel layer
- d cutting/finishing of the edges
- e removing the Ni mirror shell

Replication technology

MANDREL with Au surface layer

Ellipsoidal mirror for spectral region 10 – 15 nm

Example: Elliptical mirror

MIRROR

- Mirror surface has shape of rotational ellipsoid
- Source is placed in left focus
- Detector or sample is placed in right focus
- Radiation strikes mirror surface at grazing angles 0,5° ÷ 20°
- Mirror is focusing radiation from left focus on right focus

Now manufactured by Rigaku Innovative Technologies Europe

- A part of Rigaku Corporation group (Tokyo, Japan)
- Established in 2008 as European center for the design, development and manufacturing of X-ray optics, X-ray detectors and X-ray sources
- Colaboration with Czech academic institutions and high-tech companies
- Ellipsoidal and parabolic optics for EUV/BEUV/WW/SXR/XR
 (laser plasma research, EUVL, WW and X-ray microscopy, space, ...)
- Slope error < 10 arcsec (5"), microroughness < 2 nm (0.5 nm)

Replicated GI Mirrors

Ellipsoidal GI mirror for WW application (2.3 – 4.4 nm)

Ellipsoidal GI mirror For EUVL applications (10-15 nm)

GI EUV Mirrors

Ellipsoidal GI EUV mirror for 13.5 nm

Range of Applications

Replicated Wolter X-ray mirrors for space research (aperture 80 mm)

Replicated X-ray mirror for XRD (input aperture 0.4 mm, 8 keV, grazing angle 0,5°)

LPP - Gas puff target EUV laser-plasma short wavelength source

Scheme of the gas-puff target source

Photograph of the setup

Pumping laser	Nd:YAG laser (EKSPLA), 4 ns/500mJ
	pulses, repetition rate 10Hz
Nozzle	Inner: circular 0.4mm in diameter
	Outer: ring 0.7mm/1.5mm diameters
Gasses	Working gasses: Ar, Kr, Xe, O ₂ , N ₂ ,
	outer gas : He

Advantages:

- ✓ no debris from gaseous targets
- ✓ compact construction, high repeatability
- √ high conversion efficiency, very robust thousands of shots/day

LPP - Gas puff target EUV laser-plasma short wavelength source spectra

NIM B **268**, 10, 1692-1700 (2010)

Nitrogen emission in the "water window"

NIM B **268**, 10, 1692-1700 (2010)

Laser-plasma produced EUV source: laser 0.8 J / 4 ns

Laser plasma EUV source for processing polymers

Laser plasma EUV source dedicated for processing polymers has been designed at IOE and was built in co-operation with EKSPLA, RIGAKU and PREVAC high-tech companies

NANOIMAGING USING SOFT X-RAYS

Desk-top soft X-ray microscope with a laser plasma source

EUV IMAGING IN A NANOSCALE

Desk-top soft X-ray microscope with a laser plasma source

Optical table 0.6x1m

EUV beam intensity amplification - joint experiments of CTU Prague and WAT Warszaw (EUV ablative lithography)

Microstructure made in PTFE by EUV lithography. EUV radiation from gas-puff laser plasma transmitted through a metal mask

Multi-foil (MFO) XUV bifacial Kirkpatrick-Baez condenser

Focusing of soft X-ray radiation

Setup at LLG with Rigaku ellipsoid

- 200 nm Ti filter
 - \rightarrow T = 72%
 - (before: 1200 nm, T=14%= 1/5 · 72%)
- phosphor coated CCD
 - → exposure level ~ 80% in focal plane

Dr. Klaus Mann, LLG Gottingen

EUV microscope with capillary discharge plasma source (Nitrogen, λ = 2.88 nm), ellipsoidal grazing incidence condenser and Fresnel Zone objective (Czech Technical University in Prague)

2016 Source Workshop, Amsterdam, November 7-9, 2016

EUV microscope with capillary discharge plasma source (Nitrogen, λ = 2.88 nm), ellipsoidal grazing incidence condenser and Fresnel Zone objective (Czech Technical University in Prague)

EUV microscope with capillary discharge plasma source (Nitrogen, λ = 2.88 nm), ellipsoidal grazing incidence condenser and Fresnel Zone objective (Czech Technical University in Prague)

Replicated GI Mirrors Spectral and Focusing Analysis

Ellipsoidal optic for 8 keV microfocus source

0 mm
Y-AXIS IN THE SAME SCALE AS X-AXIS
400 mm

Y-AXIS NOT IN THE SAME SCALE AS X-AXIS

Ellipsoidal optic for 8 keV microfocus source

A series of X-ray beam images behind the output of ellipsoidal mirror with beam stop on the axis.

Converging reflected beam and diverging direct beam are clearly distinguishable.

Ellipsoidal optic for 8 keV microfocus source

Focal spots for off-axis source position (ray-tracing model)

Graphs a to c showing the effect of point-like X-ray source off-axis displacement on the detector intensity distribution for ellipsoidal mirror.

- $a 0 \mu m$ source displacement,
- b 200 μm displacement,
- c 400 µm displacement.

Ellipsoidal X-ray Mirror as a Spectral Filter

Focusing system prepared for a soft X-ray plasma source based on Xe gas target, driven by a 10 J/ 1ns/ 10 Hz Nd:YAG laser system

wavelength (nm)

intensity (arb. units)

10J laser system IOE, Warsaw Spectrum for 9J

600J laser system
PALS , Prague
Spectrum for 85J

Set of 2 coaxial paraboloidal mirrors optimized for the wavelength 1.5 nm Plasma Plazma Plazma paraboloidalne II Ognisko 80 mm 50 mm

Measurement of SXR GI mirror spectral reflectivity

- (a) Schematic view of the paraboloidal collector
- (b) Spectrum of the unaltered Xe plasma radiation
- (c) Spectrum of Xe plasma radiation focused using the paraboloidal collector
- (d) Calculated spectral reflectivity in 1-15 nm range

Comparison of Au and Ru coated EUV collector reflectivity

Au - plated collector Xe/He LPP source

12

wavelength (nm)

14

16

18

20

10

6

Spectra of Xe/He plasma radiation:

- a) Xe plasma emission
- b) Radiation reflected from the Au coated collector surface
- c) Radiation reflected from the Ru coated collector surface

Lobster eye & multifoil optics

- Wide FOV
- Glass and/or silicon substrate for soft X-rays
- Planar & ellipsoidal mirrors
- Foils 3x3 mm to 300x300 mm
- Foil thickness from 30 µm to 1 mm

M = mirrors
D = detector
S = center

X-ray LE - experiment vs theory

- Point-to-point focusing system
- Source: 20 μm size, 8 keV photons
- Source-detector distance: 1.2 m, 8 keV photons
- Detector: 512x512 pixels, 24x24 μm pixel size
- Intensity Gain: G=570 (experiment) vs. G=584 (comp. simulation)

Focusing of XUV radiation and XUV modification of materials (experiments at CTU, PALS and WAT)

Schematic view of one half of the multi-foil (MFO) XUV bifacial Kirkpatrick-Baez condenser – experiments at WAT, Warsaw.

MF K-B system for EUV lithography

Summary

- EUV/BEUV/SXR/XR grazing incidence mirrors have been studied and analyzed
- Selected applications of EUV/BEUV/SXR/XR mirrors and detectors were presented

THANK YOU FOR ATTENTION

Prague

Appendix

X-RAY MICROSCOPY and X-RAY µTOMOGRAPHY

SUBMICRON RESOLUTION IMAGING REQUIREMENTS

SOURCE – small size or divergence

High resolution imaging in EUV and X-ray region requires novel advanced imaging system components and methods

EUV/XR IMAGING - METHODS					
Source size/po wer	Optics	Detector pixel size	Resolution	Signal	Cost
Large/ High	No	Large	Low	High	Low
Large/ High	No	Large	Very Low	High	Low
Very Small/ Very Low	No	Large	High	Low	High
Small/ Low	Yes	Large	Very High	Very Low	Very High
Mediu m/High	No	Small	High	High	High

Powder scintillator and monocrystal scintillator image convertor comparison

The gold mesh sample - SEM image

X-ray image of the gold mesh (P43 phosphor screen)

X-ray image of the gold mesh (YAG:Ce scintillator screen)

Xsight™ Micron X-ray CCD Camera

Applications:

- •X-ray microscopy
- X-ray microtomography
- X-ray optics adjustment & metrology
- Phase contrast X-ray imaging

Field of view: 0,90 mm x 0,67 mm Resolution: ≤ 1 µm (@ 8 keV) Spectral range: 50 eV to 35 keV Exposure time range: 20 µs to 500 s

Dynamic range: 70 dB

Dimensions: 60 x 70 x 250

Weight: 2.5 kg

Xsight™ Micron X-ray CCD Camera Vacuum front end version

Spatial resolution of the X-ray camera evaluated with JIMA RT RC-02 high resolution X-ray chart at 8 keV.

X-ray image of Ixodes Ricinus (Taken by XSight Micron at RITE laboratory using 80 W microfocus X-ray tube with Cu target

X-ray image of Ixodes Ricinus
(Taken by XSight Micron at RITE laboratory using 80 W microfocus X-ray tube with Cu target)
2016 Source Workshop, Amsterdam, November 7–9, 2016

Rigaku nano3DX

High Resolution 3D X-ray Microscopy

POWER: Ultra High flux, up to 1200 W

ENERGY: Cr, Cu, Mo

DETECTOR: 3300 x 3300 x 2500 Matrix

OPTICS: No projection magnification

EASY: Minimal Alignment or

optimisation

Increased resolution by novel design (Rigaku)

Conventional design requires a small source, operating at low power, and extreme stability to prevent smearing.

The Rigaku design places the sample close to a high resolution detector allowing for a near parallel beam experiment making the system robust to environmental changes.

High Contrast for Light Elements

Selectable target materials:

Images taken with different X-ray energies

5.4 keV Cr radiation

8 keV Cu radiation

Projection images of resin foam (1.08 µm/pixel; Exposure 1 sec)

17 keV Mo radiation

Suited for organic resins, etc.

Suited for light metals, etc.

By using low energy characteristic x-rays, nano3DX gives a clear detail of a resin sample, which is difficult to measure by using continuous white radiation

Carbon Fiber Reinforced Plastic (CFRP) is Now Coming

Body for future car

CFRP is introduced for aircraft body

Central European Institute of Technology BRNO | CZECH REPUBLIC

CEITEC X-ray micro CT and nano CT

MATERIAL CHARACTERIZATION AND ADVANCED COATINGS RESEARCH GROUP

2016 Source Workshop, Amsterdam, November 7–9,

Summary

 Submicron resolution EUV/BEUV/SXR/XR imaging detectors for microscopy and tomography have been developed and characterized

THANK YOU FOR ATTENTION

Prague