

Status of Actinic Patterned Mask Inspection at KLA-Tencor

Oleg Khodykin

Outline

- Introduction
 - Bridge solution
 - Status of prior research investigations
- Xe LPP source
 - Requirements
 - Choice of architecture
 - Current status
- Conclusions

Latest reticle inspection solution

- EUV patterned masks and blanks
- Optical, Complex OPC, Quartz etch reticles
- For \geq 10nm Generation
- Practical sensitivity limited by edge roughness

Teron 6xx platform

Industry proven sensitivity for advanced optical and EUV Mask applications

³ 2016 International Workshop on EUV and Soft X-Ray Sources, Amsterdam

EUV reticle defect and inspection challenges

Pellicle transmission effects will narrow the wavelength choices

⁴ 2016 International Workshop on EUV and Soft X-Ray Sources, Amsterdam

7xx program summary

EUV actinic patterned mask inspection

- System architecture defined
- EUV-specific image sensor designed and tested
- Optics concepts provide large field and high transmission
- Xe LPP source prototype shows required lifetime
- Ultra-clean vacuum prototypes tested
- Pilot production facility ready for build-out

710 System Concept – Cross-section

Rev 2 layout

Program ready for full-scale development

APMI Concept Phase → **Technical "Go"**

Overall System Layout

Source Prototype Test Bench

Stage Design

K-T's comprehensive multi-year investigation addressed and solved all significant technical risks

⁶ 2016 International Workshop on EUV and Soft X-Ray Sources, Amsterdam

Contamination Control Technology developed at KT

To optimize Particle Performance of Wafer and Reticle Inspection Tools

⁷ 2016 International Workshop on EUV and Soft X-Ray Sources, Amsterdam

We have Repeatedly Demonstrated Zero-PWP Both in Atmosphere and Vacuum in Dedicated Particle Test Stand

K-T's infrastructure investments enable shortest time-to-success

⁸ 2016 International Workshop on EUV and Soft X-Ray Sources, Amsterdam

Xe –based LPP source

Actinic patterned mask inspection: source requirements

Property/parameter	Target Value	<u>Units</u>
Wavelength	13.5	nm, centroid
Pulse repetition rate	> 10	kHz
Pulse duration	> 10	ns, FWHM
Duty Cycle	> 95%	- minimum burst > 15 sec
Etendue	1.0 x 10 ⁻²	mm ² -sr
Radiance at IF	> 20	W/mm ² -sr
(Averaged over etendue, lifetime)		2.2% band, pre-SPF
Footprint (m)	2.8W x 2.8D x 2.8H	
Availability	> 95%	
Cost of Service (annual)	< 10%	Relative to CoGs / Price
Cost of Operation (annual)	< 5%	

¹⁰ 2016 International Workshop on EUV and Soft X-Ray Sources, Amsterdam

Method	DPP/LDP	LPP
Advantages	Simple (DPP)	Clean (mass limited targets) Small plasma size Scaling though repetition rate
Disadvantages	Erosion of near-plasma elements Large plasma volume Long plasma	Target –laser interaction (droplets)

Target	Хе	Sn
Advantages	Noble gas No deposition Off-shell vacuum pumps	High CE (>3%)
Disadvantages	High cost	Deposition (collector lifetime) High temperature operation Reacts with Ru to form alloys

¹¹ 2016 International Workshop on EUV and Soft X-Ray Sources, Amsterdam

Solid Xenon Drum Target

- Key features of the drum target:
 - LN cooled to form solid Xe film
 - Continuous Xe film growth
 - Laser hits fresh spot every time

Side view

¹² 2016 International Workshop on EUV and Soft X-Ray Sources, Amsterdam

EUV plasma image

¹³ Workshop on EUV and Soft X-Ray Sources, November 9-11, 2015, Dublin

EUV signal, plasma size, and radiance

¹⁴ Workshop on EUV and Soft X-Ray Sources, November 9-11, 2015, Dublin

Primary collector damage mechanisms

¹⁵ 2016 International Workshop on EUV and Soft X-Ray Sources, Amsterdam

Collector lifetime : re-deposition mitigation

¹⁶ 2016 International Workshop on EUV and Soft X-Ray Sources, Amsterdam

EUV source prototype

- Long collector lifetime achieved with :
 - Large plasma to collector distance -> Zero erosion of vacuum vessel
 - Advanced protection of collector and laser optic
 - Distributed buffer gas flow
 - Clean chamber: base pressure < 2*10⁻⁸torr.

Long term source brightness in free run

¹⁸ 2016 International Workshop on EUV and Soft X-Ray Sources, Amsterdam

Laser optics protection design

¹⁹ 2016 International Workshop on EUV and Soft X-Ray Sources, Amsterdam

Performance of laser optics protection

Demonstrated prototype performance

Effective duty cycle - 80%

Radiance is >8W/mm²sr @5kHz in free run mode

No reflectivity degradation (within 0.5% accuracy)

Xenon costs controlled through recycling

Demonstrated >98% Xe gas recovery with 99.999% purity of Xe.

Full scale proto-unit has been built and tested.

Long term (days) operation in steady state regime.

Automated start-up/shut-down proof-ofprinciple experiments performed.

²² 2016 International Workshop on EUV and Soft X-Ray Sources, Amsterdam

Conclusions

- Comprehensive multi-year investigation addressed and solved all significant technical risks.
- Xe LPP EUV source provides unique advantages:
 - Xenon-based source and high-transmission illuminator design provide architectural advantages in cost and CoO.
 - Achieved >5000 hrs collector lifetime at 8-10 W/mm²sr², and demonstrated >98% Xe gas recovery in closed-loop operation.
 - Scalability created path to 40 W/mm²sr².
 - Xenon costs controlled through recycling.

Thank You