2015 International Workshop on EUV and Soft X-Ray Sources (2015 Source Workshop) November 9-11, 2015, Dublin, Ireland # Performance of One Hundred Watt Source and Construction of 250Watt HVM LPP-EUV Source (S12) Hakaru Mizoguchi, Hiroaki Nakarai, Tamotsu Abe, Takeshi Ohta, Krzysztof M Nowak, Yasufumi Kawasuji, Hiroshi Tanaka, Yukio Watanabe, Tsukasa Hori, Takeshi Kodama, Yutaka Shiraishi, Tatsuya Yanagida, Georg Soumagne, Tsuyoshi Yamada, Taku Yamazaki, Shinji Okazaki and Takashi Saitou Gigaphoton Inc. Hiratsuka facility: 3-25-1 Shinomiya Hiratsuka Kanagawa, 254-8567, JAPAN Copyright © 2015 Gigaphoton Inc. Oct. 5, 2015 DOC#: ED15L-498 - Prototype LPP Source System Development Update - » Proto Device #1 - » Proto Device #2 - New Pilot System Development Update - Summary #### Power-Up Scenario and Key Technologies Update - Prototype LPP Source System Development Update - » Proto Device #1 - » Proto Device #2 - New Pilot System Development Update - Summary #### OUTLINE ### Gigaphoton's LPP Light Source Concept - High ionization rate and CE EUV tin (Sn) plasma generated by CO₂ and pre-pulse solid laser dual wavelength shooting - Hybrid CO₂ laser system with short pulse high repetition rate oscillator and commercial cw-amplifiers - Accurate shooting control with droplet and laser beam control - Tin (Sn) debris mitigation with a super conductive magnetic field - High efficient out of band light reduction with grating structured C1 mirror ### Power up scenario ### **Pre-Pulse Technology (1)** #### Fragment distribution measurement - The mist shape of a picosecond pre-pulse is different from the nanosecond - Nano-cluster distribution could be a key factor for high CE ### **Pre-Pulse Technology (2)** - In small experimental device, we observed **5.5% Ce** under optimized condition. - 17 % increase from old champion data (Ce=4.7%). PPL - CO2 delay ### **Pre-Pulse Technology (3)** EUV plasma parameters measurement by "Thomson Scattering" is ongoing in Kyushu University A Collective Laser Thomson Scattering System for Diagnostics of Laser-Produced Plasmas for Extreme Ultraviolet Light Sources Kentaro Tomita1, Kazuki Nakayama¹, Kazuya Inoue1, Atsushi Sunahara², and Kiichiro Uchino¹ ¹Interdisciplinary Graduate School of Engineering and Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan ²Institute for Laser Technology, Suita, Osaka 565-0871, Japan To develop a diagnostic system for laser-produced plasmas for extreme ultraviolet (EUV) light sources, collective laser Thomson scattering (LTS) was applied to laser-produced carbon plasmas to measure plasma parameters such as electron density (ne) and electron temperature (Te). Plasmas having parameters necessary for an EUV lie source (ne = 10^{24} - 10^{25} m³, Te = 30-50 eV) we and these parameters were successfully evaluat diagnostic system with errors below 10%. From an LTS system for diagnostics of tin plasmas for real EUV light sources was designed. © 2013 The Japan Society of Applied Physics Appl. Phys. Express 6 (2013) 076101 K. Tomita et al. Fig. 2. (a) Two-dimensional Thomson scattering image. (b) LTS spectrum extracted from the center part of (a) and the curve fit based on the theoretical model. →Dr. K. Tomita will be report New data in EUV Source Workshop in Dublin Nov. 2015 Fig. 3. (a) Two-dimensional Thomson scattering image when the additional laser was injected. (b) LTS spectrum extracted from the center part of (a) and the curve fit based on the theoretical model. ### **Droplet Generator technology (2)** Process improvement enables more than 200hrs droplet generation ## High Power CO₂ Laser Technology (1) validated performances at system ## High Power CO₂ Laser Technology (2) Potential of 20kW CO2 power at plasma was confirmed in proto#2 system. This is close to 250W target in pilot#1 system, which is 23kW. ### Power-Up Scenario and Key Technologies Update - Prototype LPP Source System Development Update - » Proto Device #1 - » Proto Device #2 - New Pilot System Development Update - Summary #### OUTLINE ### Gigaphoton EUV Sources ### **Proto Systems in Operation** #### Target System Specification | Operational Specification | | Proto #1 | Proto #2 | Pilot #1 (under construction) | | |---------------------------|-------------------|--|-------------------------------|-------------------------------|--| | | EUV Power | 25 W | > 100 W | 250 W | | | | CE | 3% | 3.5% | 4% | | | | Pulse rate | 100 kHz | 100 kHz | 100 kHz | | | Target
Performance | Output angle | Horizontal | 62° upper
(matched to NXE) | 62° upper
(matched to NXE) | | | | Availability | 1 week operation | 1 week operation | > 75% | | | Technology | Droplet generator | 20 – 25 μm | 20 μm | < 20 μm | | | | CO2 laser 5 kW | | 20 kW | 27 kW | | | | Pre-pulse laser | picosecond | picosecond | picosecond | | | | Debris mitigation | validation of magnetic
mitigation in system | 10 days | > 3 month | | # Gigaphoton's High Power EUV Light Source Prototype high power EUV light source is in operation #### Proto 1 Exposure & Mitigation test #### Proto 2 High power Experiment ### **Collector Mirror Technology** Collector reflectivity is one of the key item for power improvement | | Current | 250W target | |------------------------|---------|-------------| | Collector type | V5 | V5+ | | H2 Pressure | <20Pa | <20Pa | | Collector Efficiency | >74% | >74% | | Collector Reflectivity | >45% | >50% | | Gas Transmittance | >95% | >95% | | Plasma to clean | 31.6% | 35.1% | ### Long lifetime operation in Proto#1 system 77 hours operation with 25% dose margin Dose control, 20kHz, 80% duty cycle #### Tin Back-diffusion Issue from the Ion Catcher - Issue: tin depositions on mirror caused by back-diffusion from the ion catcher - Reduction of the back-diffusion from the ion catcher is key **Tim Deposition Simulation** **Actual Tin Deposited on Collector** ### Proto #2: EUV Power Data (short term) Champion Data: 140W EUV in burst power with 70kHz, 50% duty cycle ### Proto#2: High Duty Cycle with Dose Control Dose control capability up to 95% duty cycle with 20% dose margin was confirmed in proto#2 system at 75W in burst level operation ### Proto #2: EUV Power Data (long term 1) ### Proto #2: EUV Power Data (long term 2) ### Proto #2: EUV Power Data (long term 3) | 75 W | |----------| | 31 hr | | 3.7 BPls | | 40 kHz | | | | Duty ratio | 95% | |-----------------|-------| | Power (average) | 72W | | Dose3σ | <0.2% | 22. Oct. 2015 ### Power-Up Scenario and Key Technologies Update - Prototype LPP Source System Development Update - » Proto Device #1 - » Proto Device #2 - New Pilot System Development Update - Summary #### OUTLINE ### Pilot #1: Configuration ### **Pilot construction status** Driver laser Pre-AMP OSC and PPL Beam line **EUV** chamber **Piping** <u> (essel</u> — Сорупуні 😊 20 го Оідарноюн інс. CONFIDENTIAL ### CO2 power status in pilot system | 100kHz | OSC | PA | MA#1 | MA#2 | MA#3 | Plasma | |---------|-----|-------|---------------|---------------|--------------|---------| | Target | 80W | 5kW | 12kW | 20kW | 27kW | 23kW | | Result | 93W | Perfo | rmance will i | be verified b | efore the en | d of Q4 | | Proto#2 | 70W | 4.8kW | 9.1kW | 16.5kW | 23.7kW | (20kW) | | System | Electrical
power | Oscillator | Pre-
amplifier | Main amplifier | |---------|---------------------|------------|-------------------|----------------| | Proto#2 | 1060kVA | G | M | T | | Pilot#1 | 880kVA | G | M | M M M | ### **Technology scenario** 31hours operation with 72W average power was confirmed. Next target is 100W by increasing repetition rate. | | Status | | | Target | | | | |----------------------------------|----------|----------|----------|----------|---------------|----------|----------| | | Feb 2015 | Apr 2014 | Oct 2015 | Dec 2015 | Mar 2016 | Jun 2016 | Dec 2016 | | System | Proto#1 | Proto#2 | Proto#2 | Proto#2 | Proto#2 | Pilot#1 | Pilot#1 | | In band power | 10W | 74W | 75W | 120W | 170W | 250W | 250W | | Average power at IF dose control | 8W | 70W | 72W | 100W | 150W | 250W | 250W | | Operation time | 77hour | 0.5hour | 31hour | >24hour | >1 week | >1 week | >1 month | | Duty cycle | 80% | 95% | 95% | >90% | >90% | 100% | 100% | | Repetition rate | 20kHz | 35kHz | 40kHz | >70kHz | 100kHz | 100kHz | 100kHz | | CO2 power at plasma | 1.1kW | 10kW | 11.1kW | 14kW | 1 <i>7</i> kW | >23kW | >23kW | | CE | 3.2% | 3.2% | 3.4% | 3.5% | 3.5% | 4.0% | 4.0% | | Power budget from plasma to IF | 31.6% | 31.6% | 31.6% | 31.6% | 31.6% | 35.1% | 35.1% | | Dose margin | 25% | 20% | 40% | 20% | 20% | 20% | 20% | | Availability based on 24x7 | 13.5% | 5.3% | 10% | >20% | >50% | >60% | >90% | # OUTLINE - Power-Up Scenario and Key Technologies Update - Prototype LPP Source System Development Update - » Proto Device #1 - » Proto Device #2 - New Pilot System Development Update - Summary ### Summary - Progress of Proto #1 unit - » Further improvement of "Magnetic debris mitigation" - » Simulation expect further improvement of back-diffusion - » Report new data: 77 hrs., 10W operation data without maintenance was reported. - » Magnetic mitigation capability is discussed by using Tin distribution simulation. - Progress of Proto #2 unit - » Driver CO₂ laser system achieved 20 kW by multiline amplification with new pre-amplifier. - » Maximum power champion data: 140 W (CE 3.7%) in burst at 70 kHz, 50% duty. - » Report new data: 75W power in burst, 95 % duty under closed loop, 72W average was demonstrated during 31 hours. - » Next step is 100W average power operations during more than 24 hrs with higher availability. - Pilot #1 is under construction - » Design of system is almost fixed most parts are already ordered - » Construction will finish in Q4, 2015. First data will be expected in Q1, 2016 ### **Acknowledgements** #### Thanks for co-operation: **Mitsubishi electric CO₂ laser amp. develop. team:** *Dr. Yoichi Tanino*,* Dr. Junichi Nishimae, Dr. Shuichi Fujikawa and others. * The authors would like to express their deepest condolences to the family of Dr. Yoichi Tanino who suddenly passed away on February 1st, 2014. We are all indebted to his incredible achievements in CO₂ amplifier development. He will be missed very much. Dr. Akira Endo: HiLase Project (Prague) and Prof. Masakazu Washio and others in Waseda University Dr. Kentaro Tomita, Prof. Kiichiro Uchino and others in **Kyushu University** Dr. Jun Sunahara, Dr. Katsunori Nishihara, Prof. Hiroaki Nishimura, and others in Osaka University #### Thanks for you funding: EUV source development funding is partially support by **NEDO(New Energy and Industrial Technology Development Organization) in JAPAN** #### Thanks to my colleagues: **EUV development team of Gigaphoton;** Hiroaki Nakarai, Tamotsu Abe, Takeshi Ohta, Krzysztof M Nowak, Yasufumi Kawasuji, Hiroshi Tanaka, Yukio Watanabe, Tsukasa Hori, Takeshi Kodama, Yutaka Shiraishi, Tatsuya Yanagida, Tsuyoshi Yamada, Taku Yamazaki, Takashi Saitou and other engineers. ### THANK YOU