In-Situ Cleaning of Sn EUV Sources

Daniel Elg¹, Gianluca Panici¹, Shailendra Srivastava², David N. Ruzic¹

1: University of Illinois, Center for Plasma-Material Interactions

2: University of Illinois, Applied Research Institute

Nuclear, Plasma, and Radiological Engineering Center for Plasma-Material Interactions

Contact: druzic@illinois.edu

Outline

- Collector Cleaning Theory
- 3D Flow Modeling
- Radical Probe & 0D Modeling of H Radicals
- Experimental Plans for Measuring the Probability of Etching and the Probability of Redeposition
- Beyond EUV (6.7 nm) Optics
- Beyond EUV (6.7 nm) Source
- Conclusions

Theory

- Sn removal depends not only on etching by H radicals, but on SnH₄ dissociation and redeposition.
- Therefore, understanding of transport of SnH₄ is necessary. Described by diffusion-advection equation:

$$\frac{\partial n}{\partial t} = 0 = -\nabla \cdot (Dn) + \nu \cdot \nabla n$$

- To solve this, we need:
 - > Velocity profile **v** (SnH₄ will assume profile of H₂ flow)
 - > Radical Flux \rightarrow SnH₄ Inlet Boundary Condition
 - > Probability of Etching
 - > Probability of Redeposition \rightarrow SnH₄ Outlet Boundary Condition
- Etch rate given by radical flux and probability of etching. Subtract deposition rate to get net removal rate.

Outline

- Collector Cleaning Theory
- 3D Flow Modeling
- Radical Probe & 0D Modeling of H Radicals
- Experimental Plans for Measuring the Probability of Etching and the Probability of Redeposition
- Beyond EUV (6.7 nm) Optics
- Beyond EUV (6.7 nm) Source
- Conclusions

Modeling of H₂ Flow: Complete

- Bulk gas is mostly H₂ (by orders of magnitude)
- Assumption: Flow in chamber can be decoupled from species and solved simply for H₂; the few non-H₂ particles will take on the H₂ velocity profile.
- Solve Navier-Stokes Equations for H₂ in XCEED.

$$\rho \frac{\partial \mathbf{u}}{\partial t} - \nabla \cdot \eta (\nabla \mathbf{u} + (\nabla \mathbf{u})^T) + \rho (\mathbf{u} \cdot \nabla) \mathbf{u} + \nabla p = \mathbf{F}$$
$$\nabla \cdot \mathbf{u} = 0$$

• Velocity profiles shown below.

H₂ Flow (Continued)

If pressure or flow change, velocity profile changes as expected:

http://cpmi.uiuc.edu

Center for Plasma-Material Interactions

1.3 Torr, 1000 sccm

Outline

Collector Cleaning Theory
3D Flow Modeling

Radical Probe & 0D Modeling of H Radicals

- Experimental Plans for Measuring the Probability of Etching and the Probability of Redeposition
- Beyond EUV (6.7 nm) Optics
- Beyond EUV (6.7 nm) Source
- Conclusions

Radical Probe

 Catalytic probe: heats up due to radical recombination on catalyst surface.

$$Power = mc_p \frac{dT}{dt} = \frac{1}{2} W \gamma \Gamma A$$

 A=probe area; W=Energy from Recombination; Γ=Radical Flux, γ=Recombination probability

Radical Probe Validation: 0D Model

- Plasma Chemistry Model: Reactions \rightarrow Rate Equations
- $\bullet\, Given\, n_e$ and $T_e,$ what densities of ions and radicals are produced?
- Domain size: 1cm³
- Assumptions:
 - > Plasma is uniform inside cube (valid for the small domain)
 - > One face touches collector; ions and radicals lost to collector
 - No gain/loss through other faces (plasma next to the domain is approximately same as plasma inside domain)
 - > Quasineutrality Collector

Reactions

- Rate coefficients k either found directly in literature or calculated up from reaction cross-sections.
- Rate coefficients k will be dependent on T_e .

$$H_{2}^{+} + H_{2} \stackrel{k_{1}}{\rightarrow} H_{3}^{+} + H$$

$$H_{2}^{+} + e \stackrel{k_{2}}{\rightarrow} 2H$$

$$H_{3}^{+} + e \stackrel{k_{3}}{\rightarrow} H_{2} + H$$

$$H_{2} + e \stackrel{k_{4}}{\rightarrow} H_{2}^{+} + 2e$$

$$H_{2} + e \stackrel{k_{5}}{\rightarrow} 2H + 2e$$

$$H_{2} + e \stackrel{k_{6}}{\rightarrow} 2H + 2e$$

$$H + e \stackrel{k_{7}}{\rightarrow} H^{+} + 2e$$

$$H_{3}^{+} + e \stackrel{k_{8}}{\rightarrow} 2H + H^{+} + e$$

$$H_{2}^{+} + e \stackrel{k_{9}}{\rightarrow} 2H + 2e$$

Equations

- Rate of Change = Gain Loss
- For steady-state, rate is set to 0.
- Equations solved with ode45 in MATLAB until steady-state is reached.

$$\begin{aligned} \frac{dn_{H}}{dt} &= k_{1}n_{H_{2}}n_{H_{2}^{+}} + 2k_{2}n_{e}n_{H_{2}^{+}} + k_{3}n_{e}n_{H_{3}^{+}} + 2(k_{5} + k_{6})n_{H_{2}}n_{e} + 2k_{8}n_{e}n_{H_{3}^{+}} \\ &+ 2k_{9}n_{H_{2}}n_{e} - k_{8}n_{H}n_{e} - \frac{A}{V}\frac{n_{H}v_{H,th}}{4} \\ &\frac{dn_{H^{+}}}{dt} = k_{7}n_{H}n_{e} + k_{8}n_{e}n_{H_{3}^{+}} - \frac{A}{V}n_{H}v_{H^{+},Bohm} \\ &\frac{dn_{H_{2}^{+}}}{dt} = n_{e} - n_{H^{+}} - n_{H_{3}^{+}} \\ &\frac{dn_{H_{3}^{+}}}{dt} = k_{1}n_{H_{2}}n_{H_{2}^{+}} - k_{3}n_{e}n_{H_{3}^{+}} - k_{8}n_{e}n_{H_{3}^{+}} - \frac{A}{V}n_{H}v_{H_{3}^{+},Bohm} \end{aligned}$$

Results

- n_e, T_e measured with Langmuir probe at 260mTorr (to allow for lowpressure regime for collisionless sheath equations)
- $n_e = 10^{10} \text{cm}^{-3}$, $T_e = 4.5 \text{eV}$
- 0D Model at $n_e = 10^{10} \text{ cm}^{-3}$:
- 4.5eV: n_H=4.4x10¹²cm⁻³
- Well within error bar of radical probe measurement (4.5 +/- 1 x 10¹² cm⁻³)
- Conclusion: Radical Probe works; it is a reliable experimental diagnostic.

Comparison of Model and Measurement ¹³

Outline

- Collector Cleaning Theory
- 3D Flow Modeling
- Radical Probe & 0D Modeling of H Radicals
- Experimental Plans for Measuring the Probability of Etching and the Probability of Redeposition
- Beyond EUV (6.7 nm) Optics
- Beyond EUV (6.7 nm) Source
- Conclusions

Future Experiments

- Scan radical probe radially over collector \rightarrow radial n_H profile
- Also, need P(etching) and P(redeposition).
- P(redeposition) is dependent on temperature; P(etching) may be as well.
- Temperature can be measured on collector. Will need to perform the probability experiments as a function of temperature.

Probability of Etching

- Sn-coated QCM to measure etch rate
- •QCM is small; no other source of Sn \rightarrow No redeposition
- Temperature-controlled
- Remote plasma source with grid \rightarrow only H₂ and radicals incident on QCM.

Probability of Redeposition

- Flow SnH₄ into chamber; measure deposition on temperature-controlled Sncoated QCM.
- However, SnH_4 will need to be produced.
- One way: $SnCl_4 + LiAIH_4 \rightarrow LiCl + AICl_3 + SnH_4$
- Possible Setup for SnH₄ Synthesis and Deposition:

June 17th, 2015

MSWP Chamber to be Used for Experiments

EUVL Workshop Maui, HI June 17th, 2015

18

Outline

- Collector Cleaning Theory
- 3D Flow Modeling
- Radical Probe & 0D Modeling of H Radicals
- Experimental Plans for Measuring the Probability of Etching and the Probability of Redeposition

• Beyond EUV (6.7 nm) Optics

- Beyond EUV (6.7 nm) Source
- Conclusions

Beyond EUV

Transition to 6.X nm light

- Two fuels of importance: Gd , Tb
- Gd peak : 6.775 nm
- Tb peak : 6.515 nm
- La/B, LaN/B , LaN/B₄C frontrunner multilayer mirrors.
- Boron has K-absorption edge at 6.6nm.
- Theoretical R_{max} is high (~80%), but bandwidth is low (0.6%)
- However, real mirrors have yet to reach above 60%.
- This hinders development of BEUV.

http://cpmi.uiuc.edu

Center for Plasma-Material Interactions

For peak intensity **Tb is better than Gd**. For peak MLM reflectivity **Gd is better than Tb**.

Feasibility of 6.7nm

If we can maximize the reflectivity, 6.7nm stands a shot.

How an MLM Works

- Bragg Reflection
- Reflectivity is function of f, g, β
- Optimal β : $\tan \pi \beta_* = \pi (\beta_* + g)$.

- <u>Minimize g</u>: low Im(ε₂). Spacer should have lowest possible absorption.
- <u>Maximize f</u>: High Re(ε₁- ε₂). High permittivity contrast between materials.
- Ratio of I_1/I_2 : Solving $\tan \pi \beta_* = \pi (\beta_* + g)$, yields <u>optimal β </u>.
- High f also leads to high bandwidth (low resolving power).

EUVL Workshop Maui, HI June 17th, 2015

Center for Plasma-Material Interactions

22

- Spacer material is chosen for having an absorption edge just below wavelength of interest.
- Boron has K-absoprtion edge at 6.6nm
- •Just above absorption edge, $Im(\epsilon_2)$ is very small.
- •Gd peak at 6.775nm; Im(ϵ_2) a bit higher here \rightarrow reflectivity lower.

Makhotkin et al., 2012

Importance of Every Percentage

• Every reflectivity percentage counts.

http://cpmi.uiuc.edu

Center for Plasma-Material Interactions

- For example, La/B mirrors have theoretical peak R only slightly above that of theoretical peak of La/B₄C.
- However, after going through a 10-mirror chain, that small difference removes a great deal of BEUV power.

Ways to Increase Real MLM Reflectivity

- Roughness and intermixing reduce permittivity contrast and reduce reflectivity.
 - > Reduce intermixing: lower temperature, use compounds (such as LaN) that reduce reactivity.
 - > Reduce roughness: use high mobility deposition (magnetron sputtering)
 - Ideal: ALD, potentially with ion polishing (a la Wulfhekel)
- B deposition more difficult than B₄C deposition, but B is more desirable (less-absorbing).
- Density Control
 - > Density can be varied by deposition technique
 - > Lowering density of spacer (boron) lowers its absorption
 - Potentially deposit some boron hydride film or B interspersed with H₂ bubbles

Density Effect

Example: semi-infinite mirror, Gd peak, La/B, β =0.35, ρ_B =2.37g/cm³ (normal density)

Calculated on LBNL website <http://henke.lbl.gov/optical_constants/multi2.html>

Density Effect

Semi-infinite mirror, Gd peak, La/B, β=0.35, p_B=1.15g/cm³

Note the reflectivity jump! Can we achieve this kind of density reduction?

Outline

- Collector Cleaning Theory
- 3D Flow Modeling
- Radical Probe & 0D Modeling of H Radicals
- Experimental Plans for Measuring the Probability of Etching and the Probability of Redeposition
- Beyond EUV (6.7 nm) Optics
- Beyond EUV (6.7 nm) Source
- Conclusions

Beyond EUV Source

Source Problems

- Disadvantages: Gd and Tb have high melting temperatures (1,312°C, 1,356°C respectively)
- Require solid fuel injection
- Fuel must be dense enough to have high CE , yet transmittance is an issue.
- Fuel must be large enough to utilize full laser spot.

Solution

- Form hydrocarbon particle with Gd/Tb embedded
- H/C have low 6.5 nm absorption cross section
- IR transmittance of most hydrocarbons > 90%
- Resulting spherical fuel large enough to absorb all IR energy but metal density low enough to allow EUV transparency.

Element	Absorption Cross Section (cm ² /mg)	Energy (eV)	Wavelength (nm)
Hydrogen	1.68	190	6.5
Carbon	6.27	190	6.5
Nitrogen	10.65	190	6.5
Oxygen	17.99	190	6.5
Gadolinium	23.74	185	6.7
Terbium	28.03	190	6.5

Fuel Synthesis Methods

Possible Methods

- Pulsed laser ablation of solid or gas target.
- Microplasma with gas or solid electrode.
- Plasma spray synthesis (spray pyrolysis) with oxygen-free environment.
- Magnetron sputtering in hydrocarbon atmosphere.
- 1. Not only is a magnetron simple and flexible, but particle size is mostly dependent on confinement time in plasma.
- 2. Also, because of charging of particles in the dusty plasma, agglomeration is likely lower.
- Particles would be made in a separate chamber, collected in a portable chamber and attached to existing EUV chamber.

Beyond EUV Particle Generator

Magnetron Synthesis Method: Dusty Particles

- System consists of Gd/Tb magnetron target and an Ar/methane inductively coupled plasma.
- Initial hydrocarbon particles (100 nm diameter polyethylene spheres) are injected to provide nucleation sites for hydrocarbon monomers and Gd/Tb.
- Hydrocarbon monomers ionize and form branched polymers due to plasma polymerization on the surface of the polyethylene spheres.
- Gd/Tb is assumed to sputter and embed in the particles.
- Bottom "Collector" consists of microgrids that filter out particles larger and smaller than desired size.

Beyond EUV Particle Collector

Particle Collector design

- Series of two grids with circular apertures.
- First grid allows particles greater than chosen size through. Larger particles are pumped out after particle synthesis complete.
- Second grid allows smaller particles than chosen size through. Pump below this grid takes away smaller particles.
- When completed, two gate valves above and below grids are closed in order to transport particles to injector system.

Beyond EUV

Possible Delivery Methods

- Suspend particles in liquid.
- Piezo-electric shaker coupled with an impeller.
- Overall system designed shown below.

Conclusions

- A theoretical framework has been developed for SnH₄ removal.
- Flow velocity profiles for use in diffusion-advection of SnH₄ have been computed.
- Radical probe measurements show nonlinear increase in radical density with pressure.
- 0D plasma chemistry model has been used to validate the radical probe as an experimental diagnostic.
- Currently, poor MLM reflectivity hinders BEUV development.
- Reflectivity can be raised by improving deposition techniques, enabling ALD, and reducing density of deposited B films.
- A new approach for a BEUV source has been proposed.
- With good MLM and source technology, BEUV may be able to succeed.

Acknowledgments

- Thanks to Cymer and the NSF for funding this research.
- Thanks to undergraduate assistants Valentin Castro and Shanna Bobbins.

References for Figures

- D. Kilban and G. O'Sullivan, "Extreme ultraviolet emission spectra of Gd and Tb ions," *Journal of Applied Physics*, **108**, 2010.
- A. Yakunin et al., "Next-generation EUV Lithography: challenges and opportunities", 2012 International Workshop on EUV and Soft X-Ray Sources, 2012.
- I.V. Kozhevnikov and A.V. Vinogradov, "Multilayer X-ray mirrors", Journal of Russian Laser Research, 16 (4), 1995.
- I.A. Makhotkin, et al., "Multilayer coatings for the lithography generation beyond EUVL", 2012 International Workshop on EUV and Soft X-Ray Sources, 2012.
- I.A. Makhotkin, "Structural and reflective characteristics of multilayers for 6.x nm wavelength", PhD Dissertation, University of Twente, 2013.

