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Theory

 Sn removal depends not only on etching by H radicals, but on SnH4

dissociation and redeposition.

 Therefore, understanding of transport of SnH4 is necessary.  Described 
by diffusion-advection equation:

𝜕𝑛

𝜕𝑡
= 0 = −𝛻 ∙ 𝐷𝑛 + 𝒗 ∙ 𝛻𝑛

 To solve this, we need:

 Velocity profile v (SnH4 will assume profile of H2 flow)

 Radical Flux

 Probability of Etching

 Probability of Redeposition  SnH4 Outlet Boundary Condition

 Etch rate given by radical flux and probability of etching.  Subtract 
deposition rate to get net removal rate.

3

SnH4 Inlet Boundary Condition
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Modeling of H2 Flow: Complete
 Bulk gas is mostly H2 (by orders of magnitude) 

 Assumption: Flow in chamber can be decoupled from species and solved simply for H2; 
the few non-H2 particles will take on the H2 velocity profile.

 Solve Navier-Stokes Equations for H2 in XCEED.

 Velocity profiles shown below.
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1.3 Torr, 3200 sccm (current operating conditions)
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H2 Flow (Continued)
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If pressure or flow change, velocity profile changes as expected:

1.3 Torr, 3200 sccm 3D Arrow Profile
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Radical Probe

Catalytic probe: heats up due to radical recombination on 
catalyst surface.

𝑃𝑜𝑤𝑒𝑟 = 𝑚𝑐𝑝
𝑑𝑇

𝑑𝑡
=
1

2
𝑊𝛾𝛤𝐴

A=probe area; W=Energy from Recombination; Γ=Radical Flux, 
γ=Recombination probability
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Collector

Radical Probe
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Radical Probe Validation: 0D Model

Plasma Chemistry Model: Reactions  Rate Equations

Given ne and Te, what densities of ions and radicals are 
produced?

Domain size: 1cm3

Assumptions:

Plasma is uniform inside cube (valid for the small domain)

One face touches collector; ions and radicals lost to collector

No gain/loss through other faces (plasma next to the domain is 
approximately same as plasma inside domain)

Quasineutrality

9

Plasma

Collector Wall

Collector



EUVL Workshop

Maui, HI

June 17th, 2015

Reactions
10

 Rate coefficients k either found directly in literature or calculated up from 
reaction cross-sections.

 Rate coefficients k will be dependent on Te.
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Equations
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 Rate of Change = Gain - Loss

 For steady-state, rate is set to 0.

 Equations solved with ode45 in MATLAB until steady-state is reached.
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Results

 ne, Te measured with Langmuir probe at 260mTorr (to allow for low-
pressure regime for collisionless sheath equations)

 ne=1010cm-3, Te=4.5eV

 0D Model at ne=1010cm-3:

 4.5eV: nH=4.4x1012cm-3

Well within error bar of
radical probe measurement
(4.5 +/- 1 x 1012 cm-3)

 Conclusion:
Radical Probe works; it
is a reliable experimental
diagnostic.
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Comparison of Model and Measurement 13

Measurements

Theory (based on measuring electron temperature and density)
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Future Experiments

Scan radical probe radially over collector  radial nH profile

Also, need P(etching) and P(redeposition).

P(redeposition) is dependent on temperature; P(etching) may be as 
well.

 Temperature can be measured on collector.  Will need to perform the 
probability experiments as a function of temperature.
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Probability of Etching

Sn-coated QCM to measure etch rate

QCM is small; no other source of Sn  No redeposition

Temperature-controlled

Remote plasma source with grid  only H2 and radicals 
incident on QCM.
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Probability of Redeposition
 Flow SnH4 into chamber; measure deposition on temperature-controlled Sn-

coated QCM.

 However, SnH4 will need to be produced.

 One way: SnCl4 + LiAlH4  LiCl + AlCl3 + SnH4

 Possible Setup for SnH4 Synthesis and Deposition:

17

Norman, et al., 1968

SnH4 source Deposition Chamber

Measure:

• Pressure Rise TimeSnH4

Flowrate

• Pressure with flow and 

pumping  SnH4 Density

• Deposition Rate on QCM
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MSWP Chamber to be Used for Experiments
18
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Beyond EUV

 Two fuels of importance: Gd , Tb

Gd peak : 6.775 nm

 Tb peak : 6.515 nm

 La/B, LaN/B , LaN/B4C frontrunner 
multilayer mirrors. 

Boron has K-absorption edge at 
6.6nm.

 Theoretical Rmax is high (~80%), 
but bandwidth is low (0.6%)

However, real mirrors have yet to 
reach above 60%.

 This hinders development of 
BEUV.
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For peak intensity Tb is better than Gd. 

For peak MLM reflectivity Gd is better than Tb.

Kilban and O’Sullivan, 2010

Transition to 6.X nm light

Kilban and O’Sullivan, 2010
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Feasibility of 6.7nm
21

ASML & Zeiss, SPIE 2012

Accounts for 0.6% bw

Maximizing this 

is key

Maximum 

Rmax at 

Boron K-edge 

(6.6nm); Gd

peak at 

6.775nm

If we can maximize the reflectivity, 6.7nm stands a shot.
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How an MLM Works
Bragg Reflection

Reflectivity is function of f, g, β

Optimal β:
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ε2

ε1

l2

l1
𝛽 =

𝑙1
𝑙2

Kozhevnikov, 1995

Rmax at optimal β

 Minimize g: low Im(ε2).  Spacer 
should have lowest possible 
absorption.

 Maximize f: High Re(ε1- ε2).  High 
permittivity contrast between 
materials.

 Ratio of l1/l2: Solving
yields optimal β. 

 High f also leads to high bandwidth 
(low resolving power).

Spacer

Reflector
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Wavelength “Mismatch”

Spacer material is chosen 
for having an absorption 
edge just below 
wavelength of interest.

Boron has K-absoprtion
edge at 6.6nm

Just above absorption 
edge, Im(ε2) is very small.

Gd peak at 6.775nm; 
Im(ε2) a bit higher here 
reflectivity lower.

23

Makhotkin et al., 2012
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Importance of Every Percentage
24

Every reflectivity percentage counts.

For example, La/B mirrors have theoretical peak R only 
slightly above that of theoretical peak of La/B4C.

However, after going through a 10-mirror chain, that small 
difference removes a great deal of BEUV power.

Single Mirror Rmax Integrated reflectivity of 10-mirror chain

Makhotkin, 2013
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Ways to Increase Real MLM Reflectivity

Roughness and intermixing reduce permittivity contrast and 
reduce reflectivity.

Reduce intermixing: lower temperature, use compounds (such as 
LaN) that reduce reactivity.

Reduce roughness: use high mobility deposition (magnetron 
sputtering)

 Ideal: ALD, potentially with ion polishing (a la Wulfhekel)

B deposition more difficult than B4C deposition, but B is more 
desirable (less-absorbing).

Density Control

Density can be varied by deposition technique

Lowering density of spacer (boron) lowers its absorption

Potentially deposit some boron hydride film or B interspersed 
with H2 bubbles

25
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Density Effect
Example: semi-infinite mirror, Gd peak, La/B, β=0.35, ρB=2.37g/cm3 (normal density)

26

Calculated on LBNL website <http://henke.lbl.gov/optical_constants/multi2.html>
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Density Effect
27

Semi-infinite mirror, Gd peak, La/B, β=0.35, ρB=1.15g/cm3

Note the reflectivity jump!  Can we achieve this kind of density reduction?
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Beyond EUV Source

Source Problems

 Disadvantages: Gd and Tb have high melting temperatures (1,312°C, 
1,356°C respectively)

 Require solid fuel injection

 Fuel must be dense enough to have high CE , yet transmittance is an issue. 

 Fuel must be large enough to utilize full laser spot.

29

Element

Absorption 

Cross 

Section 

(cm2/mg)

Energy 

(eV)

Wavelength 

(nm)

Hydrogen 1.68 190 6.5

Carbon 6.27 190 6.5

Nitrogen 10.65 190 6.5

Oxygen 17.99 190 6.5

Gadolinium 23.74 185 6.7

Terbium 28.03 190 6.5

Solution

 Form hydrocarbon particle with Gd/Tb embedded

 H/C have low 6.5 nm absorption cross section

 IR transmittance of most hydrocarbons > 90%

 Resulting spherical fuel large enough to absorb 
all IR energy but metal density low enough to 
allow EUV transparency.
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Fuel Synthesis Methods

 Pulsed laser ablation of solid or gas target.

Microplasma with gas or solid electrode.

Plasma spray synthesis (spray pyrolysis) with oxygen-free 
environment.

Magnetron sputtering in hydrocarbon atmosphere.

30

Possible Methods

1. Not only is a magnetron simple and flexible, but particle size is mostly 

dependent on confinement time in plasma. 

2. Also, because of charging of particles in the dusty plasma, agglomeration is 

likely lower.

• Particles would be made in a separate chamber, collected in a portable 

chamber and attached to existing EUV chamber.
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Beyond EUV Particle Generator

 System consists of Gd/Tb magnetron target and 
an Ar/methane inductively coupled plasma.

 Initial hydrocarbon particles (100 nm diameter  
polyethylene spheres) are injected to provide 
nucleation sites for hydrocarbon monomers and 
Gd/Tb.

 Hydrocarbon monomers ionize and form 
branched polymers due to plasma 
polymerization on the surface of the 
polyethylene spheres.

 Gd/Tb is assumed to sputter and embed in the 
particles. 

 Bottom “Collector” consists of microgrids that 
filter out particles larger and smaller than 
desired size.

31

Magnetron Synthesis Method: Dusty Particles
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Beyond EUV Particle Collector

 Series of two grids with circular 
apertures.

 First grid allows particles greater than 
chosen size through. Larger particles 
are pumped out after particle synthesis 
complete.

 Second grid allows smaller particles 
than chosen size through. Pump below 
this grid takes away smaller particles.

 When completed, two gate valves 
above and below grids are closed in 
order to transport particles to injector 
system.

32

Particle Collector design
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Beyond EUV

 Suspend particles in liquid.

 Piezo-electric shaker coupled with an impeller.

Overall system designed shown below.

33

Possible Delivery Methods

Particle Synthesis
Chamber

Collector Collector

Injector

To Laser Ablation 

Chamber
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Conclusions

A theoretical framework has been developed for SnH4 removal.

Flow velocity profiles for use in diffusion-advection of SnH4 have been 
computed.

Radical probe measurements show nonlinear increase in radical 
density with pressure.

0D plasma chemistry model has been used to validate the radical 
probe as an experimental diagnostic.

Currently, poor MLM reflectivity hinders BEUV development.

Reflectivity can be raised by improving deposition techniques, enabling 
ALD, and reducing density of deposited B films.

A new approach for a BEUV source has been proposed.

With good MLM and source technology, BEUV may be able to 
succeed.
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