Update on One Hundred Watt HVM LPP-EUV Light Source

2015 International Workshop on EUV Lithography

Dr. Hakaru Mizoguchi
CTO & Executive Vice President
Gigaphoton Inc.
• Introduction
• Prototype LPP Source System Development Update
 » Gigaphoton’s LPP Light Source Concept
 » Gigaphoton’s EUV Source Configuration
 » Proto Device #1
 Debris Mitigation Technology Update
 » Proto Device #2
 High Power Operation Data Update
• New Pilot System Development Update
• Summary
DUV Installations are Rapidly Growing

Gigaphoton for the first time achieved **52%** share of new DUV light source unit sales in **2014** – expected to reach more than **68%** by end of fiscal 2015.
EUV Power Achievements and Target

Consistent results have been demonstrated for the last 9 quarters

EUV power status

250W Pilot Target

140W (2014.12)

118W (2014.10)

92W (2014.6)

8W (2013.2)

43W (2014.2)

15W (2013.8)
OUTLINE

• Introduction

• Prototype LPP Source System Development Update
 » Gigaphoton’s LPP Light Source Concept
 » Gigaphoton’s EUV Source Configuration
 » Proto Device #1
 Debris Mitigation Technology Update
 » Proto Device #2
 High Power Operation Data Update

• New Pilot System Development Update

• Summary
Gigaphoton’s LPP Light Source Concept

- High ionization rate and CE EUV tin (Sn) plasma generated by CO$_2$ and pre-pulse solid laser dual wavelength shooting
- Hybrid CO$_2$ laser system with short pulse high repetition rate oscillator and commercial cw-amplifiers
- Accurate shooting control with droplet and laser beam control
- Tin (Sn) debris mitigation with a super conductive magnetic field
- High efficient out of band light reduction with grating structured C1 mirror
Based on basic physical consideration and experiments, Gigaphoton has chosen to adopt the pre-pulse technology since 2009.

In 2012 Gigaphoton discovered that shortening the pre-pulses duration dramatically enhance the conversion efficiency.
Pre-Pulse Technology (2)

Experiment shows picosecond pre-pulse dramatically enhances ionization rate and CE.

Data in 10Hz Experimental Device

- **CE performance**
 - Conversion efficiency vs. CO2 energy on droplet
 - Improvement indicated for picosecond (psec) vs. nanosecond (nsec) pulses

- **Ionization performance**
 - Ionization rate vs. CO2 energy on droplet
 - Improvement indicated for picosecond (psec) vs. nanosecond (nsec) pulses

Sn Droplet Smash

- Dome like target
- Flat disk like target

Copyright © 2015 Gigaphoton Inc.

June 17, 2015
Pre-Pulse Technology (3)

Fragment distribution measurement

- The mist shape of a picosecond pre-pulse is different from the nanosecond
- Nano-cluster distribution could be a key factor for high CE

<table>
<thead>
<tr>
<th></th>
<th>10 ps</th>
<th>10 ns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse energy</td>
<td>2.0 mJ</td>
<td>2.7 mJ</td>
</tr>
<tr>
<td>delay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60 deg view</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90 deg view</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Modeling of pre-pulse plasma

- All laser energy irradiated before plasma expansion
- Pre-pulse plasma Expansion ~60nm (~10psx6 km/s)
- Liquid Tin move to opposite of pre-pulse plasma expansion
- Liquid deformation speed ~1000m/s (Sonic speed)
- Thicker disk like fragment
- Fragment expansion
Gigaphoton, in cooperation with CW-CO\textsubscript{2} laser companies, has been jointly developing a unique high power pulsed CO\textsubscript{2} laser system since 2004.

Main Pulse CO\textsubscript{2} Laser System

- **OSC**: Gigaphoton Oscillator Laser
- **EO isolator**
- **PA**: Fast axial flow CO\textsubscript{2} laser amplifier
- **MA#1**: Transverse-flow CO\textsubscript{2} laser amplifier
- **MA#2**
- **MA#3**
- **Amplifier Lasers**

Pre-pulse Laser Performance

- **Wavelength**: 1064.3 nm
- **Max Pulse Energy**: 1 mJ
- **Pulse Duration**: 12 ps
- **Rep Rate**: single~120 kHz
- **Average Power**: 100 W
High Power CO$_2$ Laser Technology (2)

<table>
<thead>
<tr>
<th>Target at Plasma</th>
<th>System</th>
<th>Oscillator</th>
<th>Pre-Amplifier</th>
<th>Main Amplifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>5kW</td>
<td>Endurance Testing Platform</td>
<td>GPI</td>
<td>R</td>
<td>T</td>
</tr>
<tr>
<td>8kW</td>
<td>Power Up Testing</td>
<td>GPI</td>
<td>R</td>
<td>T</td>
</tr>
<tr>
<td>14kW</td>
<td>Power Up Testing</td>
<td>GPI</td>
<td>M</td>
<td>T</td>
</tr>
<tr>
<td>>20kW</td>
<td>Customer Beta Unit</td>
<td>GPI</td>
<td>M</td>
<td>M</td>
</tr>
</tbody>
</table>

- **Proto #1**
- **Proto #2**
- **Under Construction Pilot #1**

Validated performances at system
Gigaphoton EUV Sources

2 – proto system are in operation
1 – pilot system is under construction

Pilot #1 (under construction)

Proto #1
From Oct 2012

Proto #2
From Nov 2013

Copyright © 2015 Gigaphoton Inc.
2015 International Workshop on EUV Lithography
June 17, 2015 | DOC#: ED15L-214
Proto Systems in Operation

Target System Specification

<table>
<thead>
<tr>
<th>Operational Specification</th>
<th>Proto #1</th>
<th>Proto #2</th>
<th>Pilot #1 (under construction)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target Performance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EUV Power</td>
<td>25 W</td>
<td>> 100 W</td>
<td>250 W</td>
</tr>
<tr>
<td>CE</td>
<td>3%</td>
<td>4%</td>
<td>4%</td>
</tr>
<tr>
<td>Pulse rate</td>
<td>100 kHz</td>
<td>100 kHz</td>
<td>100 kHz</td>
</tr>
<tr>
<td>Output angle</td>
<td>Horizontal</td>
<td>62° upper (matched to NXE)</td>
<td>62° upper (matched to NXE)</td>
</tr>
<tr>
<td>Availability</td>
<td>1 week operation</td>
<td>1 week operation</td>
<td>> 75%</td>
</tr>
<tr>
<td>Technology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Droplet generator</td>
<td>20 – 25 μm</td>
<td>20 μm</td>
<td>< 20 μm</td>
</tr>
<tr>
<td>CO2 laser</td>
<td>> 8 kW</td>
<td>> 12 kW</td>
<td>25 kW</td>
</tr>
<tr>
<td>Pre-pulse laser</td>
<td>picosecond</td>
<td>picosecond</td>
<td>picosecond</td>
</tr>
<tr>
<td>Debris mitigation</td>
<td>validation of magnetic mitigation in system</td>
<td>10 days</td>
<td>> 30 days</td>
</tr>
</tbody>
</table>
Gigaphoton’s High Power EUV Light Source

Prototype high power EUV light source is in operation

Proto 1 Exposure & Mitigation test
Proto 2 High power Experiment
Proto#1: 77 hrs. EUV Emission

- Average power 10W with dose control, **77 hrs.** EUV emission was achieved by Proto#1 (total operation time is **261 hrs.**)
- Total pulse number is 4.4 Bpls.
- Dose stability 3 sigma typically < 0.3%
Tin Back-diffusion Issue from the Ion Catcher

- Issue: tin depositions on mirror caused by back-diffusion from the ion catcher
- Reduction of the back-diffusion from the ion catcher is key
Tin Back-diffusion Issue from the Ion Catcher

Progress of resolving back-diffusion issue

Improvement of back-diffusion from the ion catcher is very clear

Oct. 2014

Nov. 2014

Present (Testing)

unwanted tin (Sn) debris
Proto #2 System for High Power Testing

- **EUV Light Beam**
- **Droplet Generator**
- **Intermediate Focus**
- **EUV Plasma Point**
- **Driver Laser Beam**
Proto #2 System Layout

Mitsubishi pre-amplifier was installed in Proto #2 and performance was confirmed.
Proto #2 EUV Power Data

Champion Data: 140W EUV in burst power with 70kHz, 50% duty cycle
Proto #2 EUV Power Data

2014 Sep

Average power: 40W
50kHz, 50% duty cycle

(data shown at EUV Symposium 2014)

2014 Dec

Average power: 50W
80kHz, 50% duty cycle

2 hrs. :60-50W

120-100W in-burst, 80kHz, 50% duty cycle (Clean power in burst) during 120min
Output power 60-50W (120-100W @ 50% duty) average during 120 min.
Proto#2: Dose control performance

20% dose margin

Open loop, 35kHz, 50% duty cycle

- In-band power vs. CO2 RF duty cycle (%)
 - Dose margin 20%

Open loop, RF 90%

- Average power: 46W
- In band power: 92W

Dose control

- Average power: 37W
- In band power: 74W

Dose error: < +/-0.1%
Proto#2: High Duty Cycle with Dose Control

Dose control capability up to 95% duty cycle with 20% dose margin was confirmed in proto#2 system at 75W in burst, 70W in average level operation.

Average power with dose control

- 35kHz, 20% dose margin
- 37W average power, 75W in band power
- 70W average power, 75W in band power

95% duty cycle

- Average power: 70W
- In band power: 75W

50% duty cycle

- Average power: 37W
- In band power: 75W
Availability Status

Availability is continuously increasing in 13wk level moving average.
• Introduction
• Prototype LPP Source System Development Update
 » Gigaphoton’s LPP Light Source Concept
 » Gigaphoton’s EUV Source Configuration
 » Proto Device #1
 Debris Mitigation Technology Update
 » Proto Device #2
 High Power Operation Data Update
• New Pilot System Development Update
• Summary
Pilot #1 EUV Light Source for HVM

Layout of 250W EUV Light Source

First HVM EUV Source

- 250W EUV source

<table>
<thead>
<tr>
<th>Operational specification (Target)</th>
<th>HVM Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance</td>
<td></td>
</tr>
<tr>
<td>EUV Power</td>
<td>> 250W</td>
</tr>
<tr>
<td>CE</td>
<td>> 4.0 %</td>
</tr>
<tr>
<td>Pulse rate</td>
<td>100kHz</td>
</tr>
<tr>
<td>Availability</td>
<td>> 75%</td>
</tr>
<tr>
<td>Technology</td>
<td></td>
</tr>
<tr>
<td>Droplet generator</td>
<td></td>
</tr>
<tr>
<td>Droplet size</td>
<td>< 20mm</td>
</tr>
<tr>
<td>CO2 laser</td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td>> 20kW</td>
</tr>
<tr>
<td>Pre-pulse laser</td>
<td></td>
</tr>
<tr>
<td>Pulse duration</td>
<td>psec</td>
</tr>
<tr>
<td>Debris mitigation</td>
<td></td>
</tr>
<tr>
<td>Magnet, Etching</td>
<td>> 15 days (>1500Mpls)</td>
</tr>
</tbody>
</table>

EUV Exposure Tool

EUV Exposure Tool

First HVM EUV Source

- 250W EUV source
EUV Pilot #1 Light Source or HVM

CO$_2$ laser construction in progress – target spec. is >27KW
Utility Specification (EXPECTED)

- GPI specification of Pilot#1.
- It is remarkable low consumption compare with other source.

<table>
<thead>
<tr>
<th>Pilot#1 Specification</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>EUV Power</td>
<td>250</td>
<td>W</td>
</tr>
<tr>
<td>Electrical power input (at full load)</td>
<td>880</td>
<td>kVA</td>
</tr>
<tr>
<td>Thermal load to water</td>
<td>780</td>
<td>kW</td>
</tr>
<tr>
<td>Cooling water flow rate (at 17 °C)</td>
<td>1608</td>
<td>L/min</td>
</tr>
<tr>
<td>Hydrogen gas consumption</td>
<td>30</td>
<td>NL/min</td>
</tr>
</tbody>
</table>
EUV Pilot #1 construction status update

- Driver laser: All amplifiers are delivered, assemble will complete end of July 2015
- EUV Chamber: Under designing. Device will complete end of September 2015
OUTLINE

• Introduction
• Prototype LPP Source System Development Update
 » Gigaphoton’s LPP Light Source Concept
 » Gigaphoton’s EUV Source Configuration
 » Proto Device #1 Debris Mitigation Technology Update
 » Proto Device #2 High Power Operation Data Update
• New Pilot System Development Update
• Summary
Power-Up Milestones

We are achieving **solid** and **steady** progress towards realizing our HVM EUV source

<table>
<thead>
<tr>
<th></th>
<th>EUV clean power</th>
<th>Target</th>
<th>CO₂ power at plasma</th>
<th>CE</th>
<th>Plasma to IF clean</th>
<th>CO₂ laser</th>
<th>Collector mirror</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25W</td>
<td>2013, Q4</td>
<td>5kW</td>
<td>2.5%</td>
<td>21.7%</td>
<td>2 main amp. system: Proto#1</td>
<td>Normal Type</td>
</tr>
<tr>
<td></td>
<td>43W</td>
<td>2014, Q1</td>
<td>8kW</td>
<td>3%</td>
<td>21.7%</td>
<td>3 main amp. system: Proto#2</td>
<td>Normal Type</td>
</tr>
<tr>
<td></td>
<td>92W</td>
<td>2014, Q2</td>
<td>14kW</td>
<td>4.2%</td>
<td>21.7%</td>
<td>Mitsubishi pre-amp.: Proto#2</td>
<td>Normal Type</td>
</tr>
<tr>
<td></td>
<td>140W</td>
<td>2014, Q4</td>
<td>>14kW</td>
<td>>4.2%</td>
<td>26.7%</td>
<td>Mitsubishi pre-amp: Proto#2</td>
<td>Grating Type</td>
</tr>
<tr>
<td></td>
<td>250W</td>
<td>2015, Q3</td>
<td>>20kW</td>
<td>>4.5%</td>
<td>26.7%</td>
<td>Mitsubishi main amp. system</td>
<td>Grating Type</td>
</tr>
</tbody>
</table>

Proto #2 (current work)
Pilot #1 (under construction)
Summary

• Progress of Proto #1 unit
 » Further improvement of “Magnetic debris mitigation”
 » Simulation expect further improvement of back-diffusion
 » New 77 hrs., 10W operation data without maintenance was reported

• Progress of Proto #2 unit
 » Driver CO2 laser system achieved 20 kW with pre-amplifier by Mitsubishi Electric
 » Maximum power champion data: 140 W (CE 3.7%) in burst at 70 kHz, 50% duty
 » 120-100 W power in burst, 50% duty, (60-50 W average) for 120 min.
 » Reported new data: Dose control capability is proved experimentally (control margin 20%), until 95% duty cycle with 75W in burst level (70W in average power)
 » Next step is higher average power (>100W) operations during more than 24 hrs.

• Pilot #1 is under construction
 » Design of system is almost fixed - most parts are already ordered
 » Construction will finish in Q3, 2015. First data will be expected in Q4, 2015
Acknowledgements

Thanks for co-operation:

Mitsubishi electric CO₂ laser amp. develop. team: Dr. Yoichi Tanino *, Dr. Junichi Nishimae, Dr. Shuichi Fujikawa and others.

* The authors would like to express their deepest condolences to the family of Dr. Yoichi Tanino who suddenly passed away on February 1st, 2014. We are all indebted to his incredible achievements in CO₂ amplifier development. He will be missed very much.

Dr. Akira Endo : HiLase Project (Prague) and Prof. Masakazu Washio and others in Waseda University
Dr. Kentaro Tomita, Prof. Kiichiro Uchino and others in Kyushu University
Dr. Jun Sunahara, Dr. Katsunori Nishihara, Prof. Hiroaki Nishimura, and others in Osaka University

Thanks for you funding:

EUV source development funding is partially support by NEDO (New Energy and Industrial Technology Development Organization) in JAPAN

Thanks to my colleagues:

EUV development team of Gigaphoton; Hiroaki Nakarai, Tamotsu Abe, Takeshi Ohta, Krzysztof M Nowak, Yasufumi Kawai, Hiroshi Tanaka, Yukio Watanabe, Tsukasa Hori, Takeshi Kodama, Yutaka Shiraishi, Tatsuya Yanagida, Tsuyoshi Yamada, Taku Yamazaki, Takashi Saitou and other engineers.
THANK YOU