Challenges of EUV lithography for HVM

June 17, 2015

Takayuki UCHIYAMA

TOSHIBA Corporation
Contents

- Introduction

- Challenges of EUV lithography for HVM
 - 1st step for HVM; requirements for pilot production
 - 2nd step for HVM; requirements for high volume manufacturing

- Summary
Introduction

Lithography Challenges
Lithography history

Resolution or CD

- Contact exposure
- G-line WL: 436nm
- i-line 365nm
- High NA & shorter WL
 - KrF 248nm
 - ArF 193nm
 - ArF imm 193nm
- Chemically amplified resist
- Excimer laser
- RET/ OPC
- Computational lithography
- Double/multiple Patterning

Resolution = k1 \frac{\lambda}{NA}

\lambda: wave length
NA: Numerical Aperture

NA = n \cdot \sin \theta
K1: process constant [>0.25]

100nm
10μm
1μm

Recent trend of LSI scaling

Half pitch (nm)

2013 2015 2017 2019 2021 2023 2025 2027

- DRAM
- NAND Flash (2D)
- NAND Flash (3D)
- Logic-Metal
- Next memory (ReRAM, etc.)
- Immersion DP/MP
- Double patterning
- Quadruple patterning
- Octuple patterning

Scaling by immersion extension

ITRS 2013
Recent trend of LSI scaling

Cost effective is 1st priority
EUVL has potential of high resolution.

Resolution = \(\frac{\lambda}{\text{NA}} \)

\(\lambda \): exposure wavelength
\(\text{NA} \): Numerical Aperture
\(k_1 \): process constant [>0.25]

<table>
<thead>
<tr>
<th>NA</th>
<th>0.25</th>
<th>0.30</th>
<th>0.33</th>
<th>0.35</th>
<th>0.40</th>
<th>0.45</th>
<th>0.50</th>
<th>0.55</th>
<th>0.60</th>
<th>0.65</th>
<th>0.70</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>21.6</td>
<td>18.0</td>
<td>16.4</td>
<td>15.4</td>
<td>13.5</td>
<td>12.0</td>
<td>10.8</td>
<td>9.8</td>
<td>9.0</td>
<td>8.3</td>
<td>7.7</td>
</tr>
<tr>
<td>0.30</td>
<td>18.9</td>
<td>15.8</td>
<td>14.3</td>
<td>13.5</td>
<td>11.8</td>
<td>10.5</td>
<td>9.5</td>
<td>8.6</td>
<td>7.9</td>
<td>7.3</td>
<td>6.8</td>
</tr>
<tr>
<td>0.33</td>
<td>16.2</td>
<td>13.5</td>
<td>12.3</td>
<td>11.6</td>
<td>10.1</td>
<td>9.0</td>
<td>8.1</td>
<td>7.4</td>
<td>6.8</td>
<td>6.2</td>
<td>5.8</td>
</tr>
<tr>
<td>0.35</td>
<td>13.5</td>
<td>11.3</td>
<td>10.2</td>
<td>9.6</td>
<td>8.4</td>
<td>7.5</td>
<td>6.8</td>
<td>6.1</td>
<td>5.6</td>
<td>5.2</td>
<td>4.8</td>
</tr>
<tr>
<td>0.40</td>
<td>11.2</td>
<td>10.1</td>
<td>9.6</td>
<td>9.0</td>
<td>8.1</td>
<td>7.4</td>
<td>6.8</td>
<td>6.1</td>
<td>5.6</td>
<td>5.2</td>
<td>4.8</td>
</tr>
<tr>
<td>0.45</td>
<td>9.8</td>
<td>8.6</td>
<td>7.9</td>
<td>7.4</td>
<td>6.8</td>
<td>6.2</td>
<td>5.8</td>
<td>5.2</td>
<td>4.8</td>
<td>4.4</td>
<td>4.0</td>
</tr>
<tr>
<td>0.50</td>
<td>8.3</td>
<td>7.3</td>
<td>6.8</td>
<td>6.2</td>
<td>5.8</td>
<td>5.2</td>
<td>4.8</td>
<td>4.4</td>
<td>4.0</td>
<td>3.6</td>
<td>3.2</td>
</tr>
<tr>
<td>0.55</td>
<td>7.7</td>
<td>6.8</td>
<td>5.8</td>
<td>5.2</td>
<td>4.8</td>
<td>4.4</td>
<td>4.0</td>
<td>3.6</td>
<td>3.2</td>
<td>2.8</td>
<td>2.4</td>
</tr>
</tbody>
</table>

Resolution \(\rightarrow \) less than 10 nm
History of lithography potential solutions of ITRS

<table>
<thead>
<tr>
<th>Year</th>
<th>ArF</th>
<th>F2</th>
<th>ArF i</th>
<th>ArF HI</th>
<th>DP</th>
<th>MP</th>
<th>PXL</th>
<th>EUV</th>
<th>IPL</th>
<th>EPL</th>
<th>NIL</th>
<th>ML2</th>
<th>DSA</th>
<th>6.Xnm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1992</td>
<td>250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>250</td>
<td>180</td>
<td>180</td>
<td>180</td>
<td>130</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>180</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>250</td>
<td>100</td>
<td>130</td>
<td>130</td>
<td>130</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>130</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>130</td>
<td>130</td>
<td>130</td>
<td>130</td>
<td>130</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>130</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>70</td>
<td>100</td>
<td>100</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>110</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>90</td>
<td>65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>110</td>
<td>65</td>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>45</td>
<td>X</td>
<td>65</td>
<td>32</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>90</td>
<td>X</td>
<td>65</td>
<td>45</td>
<td></td>
<td></td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td>32</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>65</td>
<td>32</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td>32</td>
<td>32</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td></td>
</tr>
</tbody>
</table>

So, we wait for EUVL long time.
National project for EUVL in Japan

- 1990:
 - 1992~95: SORTEC (mask, illumination and process development by Nikon and Hitachi)

- 1995:
 - 1998~2006: ASET (process, mask and metrology)
 - 2001~10: MIRAI (mask metrology)
 - 2002~11: EUVA (source, exposure tool and optics metrology)

- 2000:
 - 2003~07: Leading (source)

- 2005:
 - 2006~11: Selete (full field scanner, mask metrology)

- 2010:
 - 2006 ASML (Full field scanner; ADT)
 - 2010~ ASML (Pre production tool; 3100)
 - 2013~ ASML (Production tool; 3300)

- 2015:
 - 2012~: EIDEC (mask metrology and resist)

- 2020:
 - 2020~?: ASML (High NA scanner)

- 30 years anniversary in 2016 ➔ HVM will start!?
Challenges of EUV lithography for HVM
Focus area of EUV lithography

<table>
<thead>
<tr>
<th>2011 / 22hp</th>
<th>2012 / 22hp</th>
<th>2013 / 22hp</th>
<th>2014 / 16hp</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Long-term reliable source operation with 200 W at IF</td>
<td>1. Long-term reliable source operation with a. 200 W at IF in 2014 b. 500 W-1,000 W in 2016</td>
<td>1. Long-term reliable source operation with a. 125 W at IF in 2014 b. 250 W in 2015</td>
<td>1. Reliable source operation with > 75% availability – 125 W at IF in 1H / 2015 (at customer) – 250 W at IF in 1H / 2016 (HVM entry at customer)</td>
</tr>
<tr>
<td>2. Mask yield & defect inspection/review infrastructure</td>
<td>2. Mask yield & defect inspection/review infrastructure</td>
<td>2. Defect free masks through lifecycle & inspection/review infrastructure</td>
<td>2. Resist resolution, sensitivity & LER met simultaneously – Progress insufficient to meet 2015 introduction target</td>
</tr>
<tr>
<td>3. Resist resolution, sensitivity & LER met simultaneously</td>
<td>3. Resist resolution, sensitivity & LER met simultaneously</td>
<td>3. Keeping mask defect free - Availability of pellicle mtg HVM req’t - Minimize defect adders during use</td>
<td>3. Mask yield & defect inspection/review infrastructure – Enable high yield defect free mask blank supply chain</td>
</tr>
<tr>
<td>• EUVL manufacturing integration</td>
<td>• EUVL manufacturing integration</td>
<td>4. Resist resolution, sensitivity & LER met simultaneously</td>
<td>4. Keeping mask defect free – Availability of pellicle mtg HVM req’t: need integrated industry strategy for solution – Minimize defect adders during use</td>
</tr>
</tbody>
</table>

1st step for HVM

- Requirements for pilot production
 - Acceptable performance for pilot production
 - Throughput with source power of > 100 W
 - Tool availability more than 75 %
 - Lithographic performance (CDU, LWR, OL)
 - Process repeatability
 - Defectivity to keep available yield for device evaluation
 - Defectivity of mask blank and mask pattern
 - Pellicle ~ T = 85 %
 - Resist process defectivity
Source power for pilot production

• LPP(Laser Produced Plasma) source
 – **Current power ~100 W, availability ~ 55 %**
 – Challenges
 • More availability
 • Operational cost reduction
 – Debris mitigation
 – Droplet generator
 – Collector mirror

![Diagram](image-url)
EUV source power

Is it possible to improve availability and power at the same time?
RLS trade off of EUV resist

- **Resolution: target \(\leq 16 \) nm LS**
 - Resolution of EUV resist is not enough, higher \(k_1 \) (poorer) than ArF.
 - \(14 \)nm LS(\(NA=0.33 \))~\(k_1=0.34 \)(CAR)~ worse LWR
 - \(13 \)nm LS(\(NA=0.33 \))~ ~\(k_1=0.32 \)(non-CAR)~ lower sensitivity
 - LS pattern of ArF resist~ \(k_1=0.26 \), 2D pattern~ \(k_1=0.31 \)

<table>
<thead>
<tr>
<th>(NA)</th>
<th>(k_1)</th>
<th>EUV resist (2D)</th>
<th>EUV resist (LS)</th>
<th>ArF resist (2D)</th>
<th>ArF resist (LS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>0.44</td>
<td>23.8</td>
<td>18.4</td>
<td>16.7</td>
<td>14.0</td>
</tr>
<tr>
<td>0.30</td>
<td>0.34</td>
<td>19.8</td>
<td>15.3</td>
<td>14.0</td>
<td>11.7</td>
</tr>
<tr>
<td>0.33</td>
<td>0.31</td>
<td>18</td>
<td>13.9</td>
<td>12.7</td>
<td>10.6</td>
</tr>
<tr>
<td>0.35</td>
<td>0.26</td>
<td>17</td>
<td>13.1</td>
<td>12.0</td>
<td>10.0</td>
</tr>
<tr>
<td>0.40</td>
<td></td>
<td>14.9</td>
<td>11.5</td>
<td>10.5</td>
<td>8.8</td>
</tr>
<tr>
<td>0.45</td>
<td></td>
<td>13.2</td>
<td>10.2</td>
<td>9.3</td>
<td>7.8</td>
</tr>
<tr>
<td>0.50</td>
<td></td>
<td>11.9</td>
<td>9.2</td>
<td>8.4</td>
<td>7.0</td>
</tr>
<tr>
<td>0.55</td>
<td></td>
<td>10.8</td>
<td>8.3</td>
<td>7.6</td>
<td>6.4</td>
</tr>
<tr>
<td>0.60</td>
<td></td>
<td>9.9</td>
<td>7.7</td>
<td>7.0</td>
<td>5.9</td>
</tr>
<tr>
<td>0.65</td>
<td></td>
<td>9.1</td>
<td>7.1</td>
<td>6.4</td>
<td>5.4</td>
</tr>
<tr>
<td>0.70</td>
<td></td>
<td>8.5</td>
<td>6.6</td>
<td>6.0</td>
<td>5.0</td>
</tr>
</tbody>
</table>
N7 Logic: Routed 2D semi-gridded Metal 1
36x38nm (PV x PH)

~20nm trench2trench separation

36nm PV

20nm T2L

38nm PH

~17nm trench

This example would require 4 exposures with 193 immersion – or one with 0.33NA EUVL

Conditions: NXE:3300B, annular illumination, 60nm resist, 40mJ/cm² dose
RLS trade off of EUV resist

- **LWR: target ≤ 3 nm**
 - Current level is >5 nm@ 16nm LS
 - Additional process can improve LWR of high frequency.
 - *It is very difficult to improve LWR of low frequency.*
 - *Etch resistance should be improved.*

- **Sensitivity: target ≤20mJ/cm²**
 - CAR: ~ 40 mJ/cm²
EUV resist

• It becomes harder to achieve RLS trade off for smaller CD.
 - **CAR:** LER / LWR
 - **Non-CAR:** Sensitivity (>60mJ/cm²)
 - **Etch resistance**

Example of resist pattern

[Graph showing optimum dose (mJ/cm²) vs. L&S hp (nm)]

→ Breakthrough of resist material
Paradigm shift to new platform
Imaging evaluation for ≤ 15nm DRAM storage node layer

Preliminary results on a NXE:3300B

Dense CH – 20nm HP

Dense CH – 18nm HP

<table>
<thead>
<tr>
<th>CDU</th>
<th>CD</th>
<th>FW CDU</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH</td>
<td>22.4</td>
<td>1.0</td>
</tr>
</tbody>
</table>

$Dose \approx 37 \text{mJ/cm}^2$

<table>
<thead>
<tr>
<th>CDU</th>
<th>CD</th>
<th>FW CDU</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH</td>
<td>19.4</td>
<td>1.4</td>
</tr>
</tbody>
</table>

$Dose \approx 49 \text{mJ/cm}^2$

Experimental conditions
- NA=0.33, sigma inner/outer=0.6/0.9 Quasar - 30

CDU ≤ 1.5nm at ~ 80 W

Courtesy of ASML
EUV Mask Infrastructure Readiness

<table>
<thead>
<tr>
<th></th>
<th>hp2xnm</th>
<th>hp1xnm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multilayer Blank Inspection</td>
<td>DUV</td>
<td>Actinic</td>
</tr>
<tr>
<td>Pattern Inspection</td>
<td>DUV</td>
<td>EB</td>
</tr>
<tr>
<td>Particle Inspection</td>
<td>DUV/EB</td>
<td>EB</td>
</tr>
<tr>
<td>Defect Repair</td>
<td>EB Repair</td>
<td>EB Repair</td>
</tr>
<tr>
<td>Mask Defect QA</td>
<td>SEM + Litho. Simulation</td>
<td>SEM + Litho. Simulation</td>
</tr>
</tbody>
</table>

- **Green** indicates the process is ready.
- **Yellow** indicates the process is under development.
EUV pellicle

NXE Pellicle concept: particle free mounting/ de-mounting
Allowing multiple inspection schemes

Key features

- Reticle front side defect-free solution
 - protects reticle front side from fall-on defects
 - particle free material combination and mounting technology to prevent particle generation
 - additional particle suppression towards pattern area
- Designed for use in NXE scanner
 - pump down/vent cycles compatible
 - vacuum and H₂ environment compatible
 - meets outgassing requirements
 - no overlay impact, distortion-free mounting
- Compatible with standard EUV mask flow
 - concept supports any type of pattern mask inspection: optical, e-beam, and actinic; both at mask shop and fab
 - allows for reticle repel cycle

Courtesy of ASML
2nd step for HVM

- Requirements for high volume production
 - Acceptable performance
 - Ultimate high throughput with > 250 W source
 - Tool availability more than 95 %
 - Lithographic performance (CDU, LWR, OL) with 250 W source i.e. higher scanning speed
 - Process repeatability and stability with 250 W source, i.e. higher temperature control
 - Defectivity to keep high yield for the real production
 - The requirement level depends on type of device and design
 - Pellicle: \(T > 90 \% \) (= 20\% loss of light intensity)
 - Need maximum continuous efforts for the lowest CoO
 - Cost down of consumable parts and materials
EUV source power

Next target: 500W

Current level: 80-100W

Future target 1kW@2020年～

1st target 250W, 125wph

Availability: 55%, 70%, 80%, 90%

DELAY

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
Pattern shrink trend based on ITRS 2013

<table>
<thead>
<tr>
<th></th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logic node</td>
<td>16/14</td>
<td>10</td>
<td>7</td>
<td>5</td>
<td>3.5</td>
<td>2.5</td>
<td>1.8</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logic Metal hp</td>
<td>40</td>
<td>32</td>
<td>32</td>
<td>28</td>
<td>25</td>
<td>23</td>
<td>20</td>
<td>18</td>
<td>16</td>
<td>14.2</td>
<td>12.6</td>
<td>11.3</td>
<td>10.0</td>
<td>8.9</td>
<td>8.0</td>
</tr>
<tr>
<td>Logic Fin hp</td>
<td>30</td>
<td>24</td>
<td>24</td>
<td>21</td>
<td>19</td>
<td>17</td>
<td>15</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAND Flash 2D</td>
<td>18</td>
<td>17</td>
<td>15</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAND Flash 3D</td>
<td>64</td>
<td>54</td>
<td>54</td>
<td>45</td>
<td>45</td>
<td>32</td>
<td>30</td>
<td>29</td>
<td>28</td>
<td>27</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>23</td>
</tr>
<tr>
<td>DRAM</td>
<td>28</td>
<td>26</td>
<td>24</td>
<td>22</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>ReRAM</td>
<td>EUV(NA=0.33) Single</td>
<td>EUV(NA=0.33) DPT</td>
<td>EUV(NA=0.33) MPT</td>
<td></td>
</tr>
</tbody>
</table>

Single exposure by high NA EUV
EUV resist for high NA EUV

• RLS trade off
 – Difficult to overcome RLS trade off for smaller CD
 – More influence of shot noise in smaller CD. More dose will be required for smaller CD.
 – Resolution will become 1st priority, so sensitivity will be the last priority.

• Etch resistance
 – Resist thickness is reducing with scaling. Etch resistance should be kept at same level as ArF resist.

• New platform materials
 – Nano-particle resist
 – Inorganic resist
 – \textbf{Need new idea for break through}!!
EUV scanner and source for high NA EUV

• High power source of 500 ~ 1000 W
 – Durability and heat treatment of all mirrors, mask and pellicle
 – Very high availability by short maintenance and longer lifetime of consumable parts
 – **XFEL is a candidate of the future source.**

• Scanner
 – Because high NA scanner will be very expensive, **higher throughput** and **ultimate availability** will be required strongly.
 – Smaller field size with 8X mask will lead high speed scanning stage in order to minimize the decrease of throughput.
 – Keeping 4X mask is the best way to achieve the highest TPT.
High power source

• **LPP**(Laser Produced Plasma)
 – **Current target:** 250 W
 – Scalability of LPP source to >> 250 W ??

• **EUV-FEL**(Free Electron Laser Laser)
 – No experience in semiconductor industry
 – Still in the conceptual stage for $\lambda = 13.5$ nm
Concerns for EUV-FEL

- Proof of concept; $\lambda=13.5$ nm / >10 kW
 - difficult to make a pilot system \sim takes long time to build

- Availability for 365D/24H
 - Redundancy system

- Impact for wafer cost
 - FEL cost is expected to be lower than LPP.

- Electrical power consumption
 - FEL will be better than LPP.

- Facility size
 - Very large underground facilities ($>\sim100$ m)

- Timely readiness; long lead time items
 - Long term project management

- Coherence cause speckle noise and peak power cause damage
 - Need new idea for all reflective optics
There are many challenges for high power EUV-FEL. But nothing will be a show stopper, technically. Careful and sufficient optimization will be required.
Optics for high NA and high power

- Speckle noise due to **high coherence**
- Damage due to **high power EUV light** for all optics (e.g. beam splitter and transport system, ML mirror, mask and pellicle)

Beam splitter & transport system

- XFEL

Actual size ~100 m

10 scanners

Scanner

© 2015 Toshiba Corporation
High NA EUV trade-off: EUV optics

Countermeasure
1) Increasing CRA: Difficult
 Because of pattern shift in defocus due to mask 3D effect

2) Reduction ratio change from 1/4 to 1/6 ~ 1/8 with keeping CRA=6 deg.
 2-1) Increasing mask size to 9 inch: Difficult
 Because of the renewal of mask infrastructure
 2-2) Decreasing of exposure field size to 1/2 or 1/4
 Challenge for TPT (concern about CoO)

ASML proposal: “HF”
8X in scan direction
4X in other direction

© 2015 Toshiba Corporation 31
Maximizing throughput of high NA EUV

Limited by mechanical constraint of scanner (scanning speed, acceleration, etc.)

Source power / dose [W/(mJ/cm²)]

Throughput [W]

4X, FF
Maximizing throughput of high NA EUV

Degradation in HF (or QF) by increasing field number and mechanical constraint of scanner (scanning speed, acceleration, etc.)

Source power / dose [W/(mJ/cm²)]
Maximizing throughput of high NA EUV

Improved scanning stage (higher scanning speed and higher acceleration, etc.) But, not best solution!

Source power / dose \([W/(mJ/cm^2)]\)

Throughput \([\text{WPH}]\)
Maximizing throughput of high NA EUV

TPT Can be maximized by improved scanning stage with 4X + FF

Source power / dose [W/(mJ/cm²)]
Maximizing throughput of high NA EUV

High power source > 1kW for > 50mJ/cm²?

4X, FF, improved scan
How to realize 4X mask for high NA

Etched ML pattern has possibility for 4X FF mask.

Etched multilayer L/S pattern of 40 nm hp on mask (10 nm hp on wafer using 4X optics) is achieved.

→ Enabler of high NA, 4X full-field and 6 inch mask.
Lithography history

Resolution or CD

- Contact exposure
- DNQ / novolak resist
- G-line WL: 436nm
- High NA & shorter WL
- i-line 365nm
- KrF 248nm
- ArF 193nm
- ArF imm 193nm
- Computational lithography
- Double / multiple Patterning
- RET/ OPC
- LOGIC
- MEMORY

Resolution = k1 \(\frac{\lambda}{\text{NA}} \)

\(\lambda \): wave length
\(\text{NA} \): Numerical Aperture

\(\text{NA} = n \cdot \sin \theta \)

\(k1 \): process constant \([>0.25] \)

- New resist?
- LPP source
- EUV(13.5nm)

Summary
Trend of EUV lithography

EUV scanner
- **Challenges**: Source power, CoO
- **Source** power:
 - 2012: 40W LPP
 - 2013: 125W LPP
 - 2014: 250W LPP
 - 2015: 500W
- **NA=0.25**
- **NA=0.33**
- **1st Target**

EUV mask infra.
- 2012: 16nm
- 2013: 11nm
- 2014: 11nm
- 2015: <11nm
- 2020: <11nm

EUV resist
- 2012: 16~13nm
- 2013: 11nm
- 2014: <6nm
- 2015: 0.26
- 2020: 0.26

RLS trade-off, Pattern collapse, Resist for high NA EUV

Defectivity, **Pattern placement error**, **Process stability**, **Metrology & inspection**, **Optimization of guide pattern design**

ITRS
- **Logic (node/hp)**
 - 20/40nm
 - 14/32nm
 - 10/28nm
 - 7/23nm
 - 5/18nm
- **NAND Flash memory**
 - 18nm
 - 17nm
 - 15nm
 - 14nm
 - 13nm
 - 12nm
- **ReRAM**
 - 12nm
 - 8nm

High NA EUV
- High power
- High NA EUV

Magnification
- <k1 factor

Pellicle, Higher sensitivity for scaling, CoO

Trends
- 2012: 16nm
- 2013: 11nm
- 2014: 11nm
- 2015: <6nm
- 2020: <6nm

2015 International Workshop on EUV Lithography

© 2015 Toshiba Corporation
Summary

- EUVL will to be introduced into logic pilot production in near future.
 - Source power of > 100 W
 - Tool availability more than 75%

- More requirements for high volume production
 - Cost-effectiveness should be considered.
 - Ultimate high throughput with > 250 W source
 - Tool availability more than 95%
 - Breakthrough of EUV resist
 - Throughput can be maximized by high power source (> 1kW) and 4X full-field 6 inch mask with etched ML mask for high NA EUV.
Acknowledgment

The author would like to thank ASML