Dynamics of a laser-assisted Z-pinch EUV source

Isaac Tobin

Laser & Plasma Applications, School of Physics, Trinity College Dublin
Supervisor – Prof. James G. Lunney
Diagnostic techniques:

- absolutely calibrated time integrated EUV spectroscopy
- 2 µm spatially resolved time integrated in-band EUV imaging
- in-band EUV filtered absolutely calibrated photodiode
- EUV filtered fast photodiode
- time- and spatially-resolved fast gated visible emission spectroscopy
- time of flight of ions with Faraday cup
- Rogowski coil characterisation of discharge current
- Angular thin film deposition debris study
Laser Assisted Vacuum Arc (LAVA) lamp

Two rotating disc electrodes with a thin liquid metal coating,

Anode wheel (GND)

Cathode wheel (live)

Liquid metal baths

In vacuum (~10^{-5} mbar)
Laser Assisted Vacuum Arc (LAVA) lamp

Two rotating disc electrodes with a thin liquid metal coating, ablate the cathode.
Laser Assisted Vacuum Arc (LAVA) lamp

Two rotating disc electrodes with a thin liquid metal coating,

- ablating the cathode,
- laser plasma triggers discharge and leads to Z-pinch.

➢ Work just published:

Isaac Tobin (tobindi@tcd.ie)
Two rotating disc electrodes with a thin liquid metal coating, ablate the cathode which is live (right hand side), discharge lead to Z-pinch.

Work just published:
Laser Assisted Vacuum Arc (LAVA) lamp

- **Visible spectroscopy:**

 - 4 mm inter electrode gap imaged onto 3 mm slit of Czerny-Turner spectrometer via 3 silvered mirrors and a Dove prism
 - Spectral range of ~ 380 nm – 610 nm
Laser Assisted Vacuum Arc (LAVA) lamp

- Spatial resolution of \(\sim 300 \, \mu m \) (4 mm imaged to 4.8 mm at ICCD with 26 \(\mu m^2 \) pixel size)
- Temporal resolution \(\sim 8 \, \text{ns} \) (minimum ICCD gate time \(\Delta t \))
- Spectral resolution \(\sim 1 \, \text{nm} \) (instrumental broadening)

- Spectra recorded for \(t_{\text{delay}} = 0 \rightarrow 1.4 \, \mu s, \quad V_{\text{discharge}} = 3 \, kV \rightarrow 6 \, kV \), with pure Sn and galinstan

\[\text{Sn: } E_{\text{discharge}} = 4 \, J \, (4.5 \, kV), \quad E_{\text{laser}} = 12 \, mJ, \quad t_{\text{delay}} = 400 \, ns, \quad \Delta t = 100 \, ns \]
Time delay between laser pulse & onset of discharge varied for material:

- galinstan: ~ 300 ns $\tau \sim 620$ ns
- pure tin: ~ 200 ns $\tau \sim 600$ ns

Galinstan 4.5 kV:
Laser Assisted Vacuum Arc (LAVA) lamp

Galinstan: $E_{\text{discharge}} = 4 \text{ J (4.5 kV)}, E_{\text{laser}} = 12 \text{ mJ}, \Delta t = 1 \mu\text{s}$

Counts

Sn III

In III

In III

Many lines left to be diagnosed (In & Ga?)

Spectra saturated, $\text{counts}_{\max} \sim 15000$

EUV emitting region (6 nm – 18 nm) time integrated imaging:

Shot (a) Shot (b) Shot (c) Shot (d)

Field of view

1.3 mm

Isaac Tobin (tobindi@tcd.ie)
Laser Assisted Vacuum Arc (LAVA) lamp

- No discharge, 12 mJ laser pulse on Sn:
 - t_0 onset of laser pulse, 10 ns gate width

![Graph showing laser pulse effects on Sn](image)

- 100 ns after laser pulse, 50 ns gate width

![Graph showing laser pulse effects on Sn](image)

- Cathode Wheel
- Laser
- Anode wheel
- LPP

Isaac Tobin (tobindi@tcd.ie)
Laser Assisted Vacuum Arc (LAVA) lamp

Isaac Tobin (tobindi@tcd.ie)

Counts_{max} = 20000
Laser Assisted Vacuum Arc (LAVA) lamp

100 ns delay with 100 ns gate time

Counts_{\text{max}} = 10000
Laser Assisted Vacuum Arc (LAVA) lamp

200 ns delay with 100 ns gate time

Counts_{max} = 15000

Isaac Tobin (tobindi@tcd.ie)
Laser Assisted Vacuum Arc (LAVA) lamp

300 ns delay with 100 ns gate time

Counts_{\text{max}} = 20000

Isaac Tobin (tobindi@tcd.ie)
Laser Assisted Vacuum Arc (LAVA) lamp

400 ns delay with 100 ns gate time

Counts_{max} = 8000

Wavelength (nm)

Isaac Tobin (tobindi@tcd.ie)
Laser Assisted Vacuum Arc (LAVA) lamp

500 ns delay with 100 ns gate time

Counts_{\text{max}} = 3000

Isaac Tobin (tobindi@tcd.ie)
Laser Assisted Vacuum Arc (LAVA) lamp

600 ns delay with 100 ns gate time

Counts_{max} = 4000

Isaac Tobin (tobindi@tcd.ie)
Laser Assisted Vacuum Arc (LAVA) lamp

700 ns delay with 100 ns gate time

Counts_{max} = 4000

Isaac Tobin (tobindi@tcd.ie)
Laser Assisted Vacuum Arc (LAVA) lamp

800 ns delay with 100 ns gate time

Counts\textsubscript{max} = 2000
Laser Assisted Vacuum Arc (LAVA) lamp

900 ns delay with 100 ns gate time

Counts_{max} = 4000

Isaac Tobin (tobindi@tcd.ie)
Laser Assisted Vacuum Arc (LAVA) lamp

Sn ion time of flight:

- d = 45 cm
- $\phi_{\text{aperture}} = 2.7$ mm
- $B \sim 65$ mT
- $V_{\text{bias}} = -25$ V
- $R_{\text{load}} = 296 \Omega / 996 \Omega$

Discharge:

<table>
<thead>
<tr>
<th>Discharge</th>
<th>Peak ion velocity:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 V</td>
<td>0.25 keV</td>
</tr>
<tr>
<td>2.45 J (3.5 kV)</td>
<td>1.84 keV</td>
</tr>
<tr>
<td>4 J (4.5 kV)</td>
<td>2.03 keV</td>
</tr>
<tr>
<td>6 J (5.5 kV)</td>
<td>3.48 keV</td>
</tr>
</tbody>
</table>

Averages of 32 signals for ion currents ($E_{\text{laser}} = 12$ mJ)

Isaac Tobin (tobindi@tcd.ie)
Stark broadening analysis:

To assume LTE checked McWhirter criterion:

\[Ne \geq 1.6 \times 10^{12} (T)^{\frac{1}{2}} (\Delta E)^{3} \]

\[\therefore Ne \geq 1.9 \times 10^{15}\text{cm}^{-3} \]
Laser Assisted Vacuum Arc (LAVA) lamp

- Boltzmann electron temperature estimates

 - Range of electron temperatures estimated for Sn III and Sn IV lines (~ 2 eV – 6 eV)
 -> Saha estimate of the **ion temperature in agreement** for this range

- Not confident in the Boltzmann data, further work needed. Statistical weight issue?

Isaac Tobin (tobindi@tcd.ie)
Conclusions

- We have recorded **time- and spatially-resolved** visible emission spectra for **Sn** and **galinstan** for discharge voltages of **3 kV – 6 kV** (along with 0 V)

 - **Clear broadening** during the onset of discharge and during pinch phase
 - Densities of up to ~ 5.5×10^{18} cm$^{-3}$ following pinch phase

 - A range of temperatures have been estimated (~ 2 eV – 6 eV)
 - Further work needed to increase confidence

 - Finer time steps ($\Delta t = 20$ns) **to be analysed** to further show evolution of plasma

 - Further **diagnosis of Ga and In lines** needed (any advice/help welcome)
Acknowledgements:

Trinity College Dublin
Shaun Hegarty, Pascal Kuhn, James Creel, Gearoid O’Connell, Shiasta Zeb, Inam Mirza, Mubarak Mujawar, Tony Donnelly, James Lunney

University College Dublin
Elaine Long, Niall Kennedy, Girum Beyene, Robert Stefanuik, Enda Scally, Paddy Hayden, Fergal O’Reilly, Gerry O’Sullivan, Emma Sokell, Padraig Dunne, Tom McCormack

New Lambda, UCD, Dublin
Paul Sheridan, Ken Fahy

Fraunhofer ILT, RWTH Aachen University, Germany
Larissa Juschkin

Dublin City University
Colm Fallon, Thomas Kelly, John Costello

ISAN, Troitsk, Russia
Yuri Sidelnikov, Konstantin Koshelev

EPPRA, France
Sergey Zakharov, Vasili Zakharov

We acknowledge the support of Science Foundation Ireland under grants 7/RFP/PHYF143 and 07/IN.1/I1771
And finally, thanks for your attention!

LAVA-lamp, Speclab, UCD
1 μs gate time:

Sn, 4 J (4.5 kV), trigger laser 12 mJ, color scale (min – max): 0 - 15000 counts

Sn, 4 J (4.5 kV), trigger laser 12 mJ, color scale (min – max): 0 - 5000 counts

Saturated
1 μs gate time:

Sn, 4 J (4.5 kV), trigger laser 12 mJ
Galinstan: $E_{\text{discharge}} = 4 \text{ J (4.5 kV)}, E_{\text{laser}} = 12 \text{ mJ}, \Delta t = 1 \mu\text{s}$

Many lines left to be diagnosed (In & Ga?)

Sn: $E_{\text{discharge}} = 4 \text{ J (4.5 kV)}, E_{\text{laser}} = 12 \text{ mJ}, \Delta t = 1 \mu\text{s}$

Spectra saturated, counts$_{\text{max}} \sim 15000$
Translational Langmuir probe

One bath removed

Faraday = 0.057 cm²

$A_{\text{Faraday}} = 0.057 \text{ cm}^2$

$d_{\text{Faraday}} = 50 \text{ cm}$

$A_{\text{Langmuir}} = 0.103 \text{ cm}^2$

$d_{\text{Langmuir}} = 8.6 \text{ cm}$

$V_{\text{bias}} = -25 \text{ V}$

$R_{\text{load}} = 100 \Omega$

Liquid metal bath

Electrode wheel

Heater current feed-through

Electrode rotation shaft