

'EXTATIC' – Extreme-ultraviolet & X-ray Technology And Training for Interdisciplinary Cooperation

Paul van Kampen

School of Physics/NCPST & Faculty of Science and Health, DCU

http://www.extatic.eu

Erasmus Mundus Joint Doctorate

EMJD Objective:

"to foster cooperation between higher education institutions and academic staff in Europe and Third Countries with a view to creating poles of excellence and providing highly trained human resources"

Partners and Associated Partners

Academic Partners include:

- Dublin City University (Coordinator)
- University College Dublin
- King's College London
- The University of Southampton
- Czech Technical University-Prague
- The University of Padua
- The Military University of Warsaw
- RWTH-Aachen University

Current associated academic partners include:

- Colorado State University (USA)
- Purdue University (USA)
- Tongji University (China)

Current associated industry/ private laboratory partners include:

- Silson (UK)
- Prevac (Poland)
- XENOCS (France)
- EPPRA (France)

- Rigaku Innovative Tech. (Prague)
- Bruker (Germany)
- Fraunhofer-ILT (Germany)
- XFEL Gmbh (Germany)

EXTATIC Structure

EXTATIC structure

Foundation module (5 cr)

2 domain specific modules (2x5 cr)

2 generic/transferable skills modules (2x5 cr)

Special topics module (5 cr)

Research: doctoral study plan, at least 2 institutions (home+host), Ph.D. thesis

Core Ideas and Values

- Help students attain a thorough grounding in X-Ray Science and Technology
- Build a community of researchers and research students at the forefront of X-Ray S&T
- Welcome Week within first month of Ph.D.:
 - Establish face-to-face contact and build personal relationships
 - Cover fundamentals to enable students to communicate meaningfully/in-depth with each other about their projects

Foundation Module

- Lectures delivered during Welcome Week at rotating partner site
- 2012: 4 lectures by David Attwood, plus 8 lectures by partner institutions, plus student presentations on plans for Year 1
- Made available on YouTube channel for students unable to attend, and as a permanent resource

Optional S&T Modules

Students choose 2 modules from:

EUV and X-Ray Sources

Radiobiology

EUV Optics

Ultrafast Lasers & X-Ray Generation

Nanostructures and Ablation

EUV and X-Ray Metrology

EUV and X-Ray Photoionisation

Optional S&T Modules

- Delivery asynchronous, on-line
- Examination "Continuous Assessment", i.e., no terminal exam
- Various modes of delivery:
 - Video lectures/screencasts/podcasts
 - Reading assignments
 - Chat forums
 - ...

Generic/Transferable Skills

- Varies from (home) university to university
- Example from DCU:
 - Intellectual Property & Commercialisation
 - Research Ethics
 - English for Academic Purposes (0 credit)
 - Advanced Qualitative Methods
 - Advanced Quantitative Research Methods
 - Principles of Research Methodology
 - Personal and Professional planning and development for full time scholars
 - Postgraduate Tutor/Demonstrator Course

Special Topics

Varies from (home) university to university

- Sample activities:
 - Report on seminars/workshops relevant to EXTATIC
 - Documented in publicly accessible blog

Doctoral Study Plan

- Living document
- First version agreed during Welcome Week:
 - By all supervisors & student
 - Covers at least first year plus timetable for exchange (at least 6 months in host institution)
- Expect the unexpected nothing set in stone
- Changes proposed to Academic Committee
 - Default position: agreed if student and supervisors are unanimously in favour and no EMJD rules are breached

Project 1: Laboratory X-ray sources in radiobiology

Student:	Daniel Adjei (Ghana)
Supervisor 1 (home):	Alan Michette (KCL)
Supervisor 2 (host):	Henryk Fiedorowicz (MUT)

- Laboratory scale X-ray sources used to investigate the effects of ionizing radiation on biological cells
 - Microfocus source up to 15 keV (KCL)
 - Gas puff target irradiated with ns laser pulses in water window (MUT)
 - K-alpha X-ray source based on a solid/cluster target irradiated with fs laser pulses (MUT)

Project 2: X-ray and EUV nanoscale imaging

Student:	Inam Ul Ahad (Pakistan)
Supervisor 1 (home):	Henryk Fiedorowicz (MUT)
Supervisor 2 (host):	Alan Michette (KCL)

- X-ray and EUV microscopy based on Fresnel optics using a compact laser plasma light source with a laser irradiated gas puff target
 - No debris
 - Nanoscale imaging in EUV and water windows
 - Applications: nanoimaging of biological objects, investigation of magnetism, actinic EUV mask inspection

Project 3: EUV Multilayer optical coatings development

Student:	Mewael Sertsu (Ethiopia)
Supervisor 1 (home):	Piergiorgio Nicolosi (UoP)
Supervisor 2 (host):	Gerry O'Sullivan (UCD)

- Characterisation and design of multilayer EUV optics
 - measurements of the optical constants of materials in the EUV when deposited in ultra thin layers
 - multilayer characterization through different techniques such as XRR, XRD, TEM, XPS, AFM, EUV reflectometry
 - Some measurements at LSFs

Project 4: EUV Interference Lithography

Student:	Hyun-su Kim (South Korea)
Supervisor 1 (home):	Larissa Juschkin (RWTH)
Supervisor 2 (host):	Bill Brocklesby (UoS)

- High density structures required for features less than
 10 nm prepared using EUV-IL
 - Study of interference patterns with sub-30 nm resolution and sufficient contrast
 - Numerical and analytical calculation, design of required diffractive elements, quantum coherence effects, exposure experiments, resist studies, characterisation of resulting nanostructures

Project 5: Mixing Lasers and Discharges

Student:	Girum Beyene (Ethiopia)
Supervisor 1 (home):	Gerry O'Sullivan (UCD)
Supervisor 2 (host):	Larissa Juschkin (RWTH)

- Very high temperature plasmas are generated by high power lasers focussed on lightening sparks across electrode vacuum gap
 - Intense incoherent soft x-ray and EUV radiation.
 - Used at the cutting edge of nano-patterning, nano-imaging and elementsensitive diagnostics on nm scale (nanoelectronics, nanobiotechnology)

Project 6: Intense incoherent XUV capillary discharge source

Student:	Fahad Nawaz (Pakistan)
Supervisor 1 (home):	Jiři Limpouch (CTU)
Supervisor 2 (host):	Alan Michette (KCL)

- A study of XUV emission from a capillary discharge.
 - Temporal, spectral and imaging diagnostics will be used for capillary discharge characterization.
 - Experimental research will be supported by theoretical studies.

Project 7: Time-resolved dynamics of noble gases

Student:	Aaron Bogmis (Cameroon)
Supervisor 1 (home):	Lampros Nikolopoulos (DCU)
Supervisor 2 (host):	Bill Brocklesby (UoS)

- Study of chaotic very intense (GW peak power) EUV and X-ray FEL pulses when resonant processes are present
 - A stochastic Monte-Carlo approach
 - Ab-initio theory can't handle all electrons at 1 time
 - Rigorous approximate method to be developed and deployed
 - Comparison with experimental data

Future

- Over 5 years, the EXTATIC program will fund over 40 students
 - Large community of X-Ray scientists
 - Program also open to self-funded students

2013 call now open, until 14th December 2012

Acknowledgements

- 1. Samantha Fahy NCPST, DCU
- 2. Anne-Louise Holloway NCPST, DCU
- 3. John Costello Dean of FSH, DCU
- 4. Anne Scott Deputy President/Registrar, DCU
- 5. Gerry O'Sullivan UCD
- 6. Alan Michette KCL

