EUV multilayer coatings: potentials and limits

2012 International Workshop on EUV Lithography

Sergiy Yulin, Torsten Feigl, Viatcheslav Nesterenko, Mark Schürmann, Marco Perske, Hagen Pauer, Tobias Fiedler and Norbert Kaiser

Fraunhofer-Institut für Angewandte Optik und Feinmechanik Jena, Germany

Thursday, 7 June 2012, Maui, Hawaii

Outline

- Introduction
- High-reflective Mo/Si MLs
- High-temperature Si-based MLs
- Radiation stable Mo/Si MLs
- B-based MLs for future generation of EUVL
- Summary and outlook

Some highlights of R&D for EUVL @ Fraunhofer IOF

- 1999 First R&D work on interface engineering
- 2002 Transfer of Mo/Si technology to Schott Lithotec AG
- 2003 Design and realization of NESSY-1 system for EUVL optics
- 2004 Development of high-temperature MLs for Cymer Inc.
- 2005 First high-temperature collector with \varnothing 320 mm for Cymer Inc.
- 2006 Development of TiO_2 and Nb_2O_5 capping layers for *Intel Corp*.
- 2007 Development of optics cleaning technologies for *Intel Corp.*
- 2008 Development of new capping layer strategy for *Intel Corp*.
- 2008 First collector with \varnothing 660 mm for *Cymer Inc.*
- 2010 Design and realization of NESSY-2 system for EUVL optics
- 2012 Design and realization of NESSY-3 system for R&D

High-reflective Si-based multilayer mirrors at 13.5 nm

D.G. Stearns and R.S. Rosen: *High-performance multilayer mirrors for soft-X-ray projection lithography:* Proc. SPIE 1547, 1991

Main imperfections in Mo/Si multilayer mirrors

Interface roughness Diffusion intermixing

Surface oxidation

The gap between theoretical and experimental reflectivity is integrated effect of all multilayer defects. Internal and surface defects should be mitigated.

Defect mitigation strategy for Mo/Si mirrors at the IOF

Mitigation strategy for multilayer defects includes:

- Interface-engineering:
 - diffusion barriers (X)
 - capping layer (Y)
 - buffer layer (Z)
- Optimized deposition process:
 - deposition parameters
 - deposition tools

Transition from conventional (2-materials) to interface-engineered design (at least 5 materials) is general mitigation strategy of multilayer defects used at IOF.

Magnetron sputtering systems at the IOF

2 X MRC (1998): R&D system

NESSY 2 (2010): up to Ø 650mm

NESSY 1 (2003): 3 x Ø 300mm (with load lock)

NESSY 3 (2012): R&D system

Seite 7 © Fraunhofer IOF

Outline

Introduction

High-reflective Mo/Si MLs

- > High-temperature Si-based MLs
- Radiation stable Mo/Si MLs
- Broadband / narrowband Mo/Si MLs
- B-based MLs for future generation of EUVL
- Summary and outlook

Enhanced reflectivity with diffusion barriers

S. Bait et al. Improved reflectance and stability of Mo/Si multilayers: Opt. Engin., 41(8), pp. 1797 – 1804

(2002).

Enhanced reflectivity of Mo/C/Si/C multilayer mirrors

 without [S/C/Mo/C]⁶⁰+S 0.4 nm C on S C on Si 76 70 0.4 nm C on Mo C on Mo [S/C/Mo/C]⁶⁰+S C on both R = 68.8 % 60 Reflectivity (13,5 nm), % $\lambda = 13.5 \text{ nm}$ 74 FWHM = 0.50 nm-1.2% Reflectivity, % 50 R = 69.6 % 72 40 $\lambda = 13.36 \text{ nm}$ FWHM = 0.52 nm-5.4 % 30 R=67.4 % 70 $\lambda = 13.1 \text{ nm}$ 20 FWHM = 0.47 nm[S/MoS,/Mo/MoS]⁶⁰+S 10 68 -6.8 %-0 0,2 0,4 0.6 0,8 0,0 13,4 12,6 12,8 13,0 13,2 13,6 13,8 14,0 Thickness of carbon, nm Wavelength, nm

calculation

$[Mo/Si]^{60} \rightarrow [Si/C (0.4 \text{ nm})/Mo]^{60}+Si \rightarrow +0.8\%$

Seite 10 © Fraunhofer IOF

Enhanced reflectivity of Mo/SiC/Si/SiC multilayer mirrors

calculation

 $[Mo/Si]^{60} \rightarrow [Si/SiC(0.5 \text{ nm})/Mo]^{60}+Si \rightarrow +0.3\%$

Seite 11 © Fraunhofer IOF

Material selection for diffusion barriers (C, B₄C, Mo₂C...)

calculation

 B_4C is more preferable than carbon. Mo_2C is more preferable than B_4C .

Current state and prospects for reflectivity enhancement

The highest reflectivity at 13.5 nm & AOI \leq 5:

System	R _{exp.} %	FWHM, nm	Ref.
Mo/X/Si/X	70.15	0.54	FOM
Mo/B ₄ C/Si/B ₄ C	70.0	0.53	LBLL
Mo/ <mark>B₄C</mark> /Si/C	69.9	0.54	IWS
Mo/Si/ <mark>C</mark>	69.6	0.53	IOF

Further prospects:

- Transition from Mo/Si to Nb/X/Si/X, Ru/X/Si/X multilayer mirrors
- Application of new promising diffusion materials
- Application of new oxidation resistant capping layers

Maximum reflectivity benefit is 1.0 - 2.0%...

Outline

Introduction

- ➢ High-reflective Mo/Si MLs
- > High-temperature Si-based MLs
- Radiation stable Mo/Si MLs
- B-based MLs for future generation of EUVL

Summary and outlook

Thermal stability of conventional Mo/Si multilayer mirrors

Mo/Si multilayer mirrors:

Max. reflectivity:	~ 69.0%
Max. temperature:	~ 100°C
Structure damage:	~ 700°C

V.V. Kondratenko et al: *Thermal stability of soft X-ray Mo/Si and* **MoSi₂/Si** *multilayer mirrors*, Appl. Opt, 1993. H. Takenaka et al.: *Thermal stability of* **Mo/C/Si/C** *multilayer soft X-ray mirrors*: J. Elect. Spectroscopy, 1996.

Seite 15 © Fraunhofer IOF

Mo/Si multilayers with enhanced thermal stability

First request: Requirements: Application: Cymer Inc. @ EUVL Symposium in Miyazaki (2004) R > 60% @ 13.5 nm and T \leq 500°C Collector EUVL optics (lithium cleaning: Tm = 108°C)

Excimer Laser Combined with Lithium Droplets

Enhanced thermal stability of MoSi₂/Si mirrors

V.V. Kondratenko et. al: Thermal stability of soft X-ray Mo/Si and MoSi₂/Si multilayer mirrors, Appl. Opt, 1993.

Seite 17

Enhanced thermal stability of Mo/C/Si/C mirrors

© Fraunhofer IOF

Seite 18

[Mo/C(0.8)/Si/C(0.8)]⁶⁰

R = 60% @ 13.5 nm but... T < 400°C

Mo/Si multilayers with enhanced thermal stability

Combination: R $\geq 60.0\%$ @ 13.5 nm & T $\leq 600^{\circ}C$

Seite 19 © Fraunhofer IOF

Reflectance of the first high-temperature collector optics 2005

Combination: R $\geq 56.0\%$ @ 13.5 nm & T $\leq 600^{\circ}C$

Seite 20 © Fraunhofer IOF

Current LPP collector coating challenges 2012

Rs > 65 % λ = (13.5 ± 0.03) nm

→ △d = 0.015 nm = 15 pm

Diameter:	> 660 mm
Lens sag:	> 150 mm
Tilt:	> 45 deg
Weight:	> 40 kg

Current state and prospects for enhanced thermal stability

Experimental reflectivity & thermal stability of Si-based multilayers:

System	T _{max} , ⁰C	R _{max} , %	FWHM, nm
Mo/Si	< 100	69	0.51
Mo ₂ C/Si	≤ 350	67	0.48
Mo/ <mark>C</mark> /Si/C	≤ 400	60	0.50
MoSi ₂ /Si	≤ 600	42	0.26
Mo/X/Si/X	≤ 600	60	0.47

Further prospects:

• Development of HT multilayers mainly focuses on the improvement of optical performance.

Our limits:

 Development of HT- multilayers with T_{max} > 600°C is limited by temperature of crystallization of Si-layers (T cryst. ~ 650°C).

CYMER Fraunhofer

Outline

> Introduction

- > High-reflective Mo/Si MLs
- > High-temperature Si-based MLs
- Radiation stable Mo/Si MLs
- B-based MLs for future generation of EUVL

Summary and outlook

Degradation of Si-capped Mo/Si multilayer mirrors

demonstrably reversible surface contamination (mainly carbon growth)

NIST Physics Laboratory

Seite 24 © Fraunhofer IOF

Development of oxidation resistant capping layers

Three capping layer conceptions:

- 1) Low-oxidation materials: (Ru, Au, Pt ...)
- 2) Stable oxides: $(TiO_2, Nb_2O_5, ZrO_{2...})$
- 3) Multilayer conception: more than two layers

- Thickness < 2.0 nm
- Good optical properties
- Chemically inert to oxygen
- Amorphous structure
- Compatible with Mo/Si stack

Reflectivity and temporal stability of TiO₂-capped mirrors

R = 68.5 % @ 13.42 nm

Reflectivity loss of 0.3% within 6 months

Enhanced radiation stability of TiO₂- and Nb₂O₅-capped mirrors

Niko

© Fraunhofer IOF

New Exposure Test Stand (ETS) & Xe-gas discharge

ETS requirements:

- DPP / Xe • Source:
- Repetition rate:
- In-band power: $< 50 W/2 \pi$
- Background pressure $\leq 10^{-8}$ Torr
- Contaminant inlet
- Pressure control
- EUV-intensity
- $> 25 \text{ mW/cm}^2$ Irradiation area
- EUV intensity
- > 15x15 mm² ± 5%

 $< 10^{-2}$ Torr

4 kHz

in-situ

Simultaneous exposure up to 4 samples is possible with similar dose (\pm 5%)

Further prospects for enhanced radiation stability

Currently developed capping layers (for imaging optics):

Material	Rmax, %	Oxidation resistance		Carbor by	n cleaning EUV
		Synchrotron	Pulsed	O ₂	H ₂
Ru	68.7	8	8		
TiO ₂	68.5	©	©		
Nb ₂ O ₅	68.5	©	©		

Further studies/prospects:

- Developed capping layer materials should be tested for EUVL optics
- Application of new multilayer capping layer systems

Our limits:

- Considerable reflectivity losses of EUVL optics due to application of oxide capping layer with d >> 2.0 nm (collector optics)
- Capabilities for lifetime studies with high-radiation power are still limited

Outline

- Introduction
- High-reflective Mo/Si MLs
- > High-temperature Si-based MLs
- Radiation stable Mo/Si MLs
- B-based multilayers for future generation of EUVL
- Summary and outlook

Next generation of lithography (NGL)

Wavelength selection

Seite 31

Theoretical reflectivity at 6.7 nm

Reflectivity of La/B vs Mo/Si multilayers

- La/B multilayer mirrors are extremely narrowband (FWHM = 0.07 nm)
- Higher reflectivity losses can be predicted due to interface defects (d = 3.4 nm)

Experimental reflectivity at 6.7 nm (2012)

Champion data is 49.8% @ 6.66 nm

(Rigaku, Japan)

Reflectivity level > 45 % was shown

by few other multilayer suppliers

Y. Platonov et al: Status of multilayer coatings for EUVL: EUVL Workshop 2011, Maui, Hawaii.

La and B are not the best materials for multilayer mirrors

Currently only Mo/B₄C (not La/B) are commercially used for XRF !!!

Seite 34

© Fraunhofer IOF

Replacement of boron by boron carbide (B₄C)

Transition from La/B to La/B₄C results in reflectivity loss of 5.4 % @ 6.7 nm.

Seite 35 © Fraunhofer IOF

B₄**C**-based multilayers with La-, Ru- and Mo-absorber layers

Theory

Experiment

Target of this study:

- interface performance
- temporal stability
- thermal stability

 $La/B_4C: R = 32.1\%$ @ 6.67 nm

 $R_{exp}/R_{th.} \sim 0.42...0.44 \ (\sigma \sim 0.8 \ nm)$

S. Yulin et al. Reflective optics for next generation lithography, EUVL Symposium, Miami (2011)

Summary and outlook

- Remarkable progress has been made in the field of Mo/Si multilayer mirrors for EUVL application
- Interface engineering (barriers, capping layers...) was successfully used for:

improvement of optical properties:

Mo/Si/C: Mo/Si/SiC:	R = 69.6% @ 13.5 nm R = 69.1% @ 13.4 nm
enhanced thermal stabil	ity:
Mo/C/Si/C	$R = 60.0\% \& T \le 400 \ ^{\circ}C$

$R = 60.0\% \ \& T \le 600 \ °C$
2

enhanced radiation stability:

$Mo/Si/B_4C + TiO_2$	R = 68.5% @ 13.5 nm
$Mo/Si/B_4C + Nb_2O_5$	R = 68.5% @ 13.5 nm

Lifetime of EUVL optics is still actual issue for multilayer community

Acknowledgements

- **EUV:** Ch. Laubis, Ch. Buchholz, J. Puls, A. Barboutis, Ch. Stadelhoff, M. Biel, B. Dubrau and F. Scholze (*PTB Berlin*)
- **TEM:** U. Kaiser (*University, Ulm*)
- **IOF:** M. Scheler, T. Müller, St. Schulze (IOF)

Thanks for your attention !

7

1 11