



# Multilayer design for EUV lithography

#### M. G. Pelizzo, A.J. Corso, P. Zuppella, P. Nicolosi

Luxor CNR IFN UOS Padova Italy Dept. of Information Engineering Univ. of Padova Italy



### OUTLINE

- •INTRODUCTION (req's for ML optics)
- ML design optimization algorithm
- •EXPERIMENTAL TESTS
- •CONCLUSIONS

# Multilayer design for the EUV lithography

Photolithography is the process of image transfer from a mask onto a substrate (e.g. semiconductor slice) coated by a thin layer of photosensitive resist

### **Process evaluation criteria:**

**RESOLUTION:** minimum developed geometry with repetibility

**EFFICIENCY**: number of wafers processed per unit of time

**CLEANLINESS:** process free from defects



### **Problems:**

- intensity and spectral purity of the source
- cleanliness of the source
- life-time of optics
- optimization of optics efficiency : peak and spectral

# Multilayer design for the EUV lithography

**PERFORMANCE IMPROVEMENT FOR EUVL MULTILAYERS** 

- Highest reflectivity
- Highest reflectivity for multiple mirror systems
- Highest integral reflectivity, best matching with source spectrum
- Capping layer system to protect the coating by the harsh environmental EUVL conditions
- Interface structures to accomplish best interface gradient index and ML thermal stability

#### Multilayer design for the EUV lithography Sn Xe 1.2 intensity @13.5nm (a.u.) DPP\_nor relative inensity 0.8 0.6 0.4 0.2 wavelength (nm) wavelength (nm)



S.S. Churilov et al., Phys. Scr. 80 (2009) 045303

# Multilayer design for the EUV lithography

- ML Structures composed by reflective MLS over Stress compensating MLS
- Mirkarimi et al. Opt. Eng. 38, 1999
- E. Zoethout SPIE 5037, 2003

#### MLS Interface engineering

• Yulin et al. MEE 83, 2006





# **Optimization algorithm**

### State of the art

1) Local optimization algorithm with starting point distributed into the domain to overcome local minimum/maximum

2) Global optimization algorithm (Genetic algorithm or simulated annealing)

### **Our approach**

Algorithm structured according to evolutive strategy

Is an algorithm conceived expressly for the multilayer domains

The algorithm acquire domain knowledge during the evolution

## **Optimization algorithm**

 A generic ML structure is identified as a point of a N-dimension vector space with components given by the position of the



 $\overline{\mathbf{x}}$ 

$$\left\|\overline{x}\right\| = \sqrt{\sum_{i=1}^{N} \left(L_{i}^{\overline{x}}\right)^{2}}$$

$$d(\overline{x}_{1}, \overline{x}_{2}) = \left\| \overline{x}_{1} - \overline{x}_{2} \right\| = \sqrt{\sum_{i=1}^{N} \left( L_{i}^{\overline{x}_{1}} - L_{i}^{\overline{x}_{2}} \right)^{2}}$$

#### patent: PCT/EP2007/060477

## **Optimization algorithm**



#### **MERIT FUNCTION**

#### HIGHEST INTEGRATED $(\mathbb{R}^{\mathbb{N}})^*(\mathbb{I})$ REFL.



A-periodic multilayer structure characteristics

## **Theoretical results**



## Efficiency improvement





# **Experimental Tests**

• Periodic and a-periodic structures (Si/Mo) with RuO /Mo (20/20) capping layer have been optimized and deposited (RXO LLC)

2

- Pt/Mo (10/20) and Si/Mo (40.5/20) capping layers have been deposited on the same structures, to check the effect on performances
- Reflectivity measurements have been performed soon after deposition and a few months later
- Secondary electron emission measurements have been performed

## XRR



## **Reflectivity measurements**





## **Reflectivity measurements**

Area underneath the standing wave curve in the capping layer must be minimized in the whole spectral range!



## Photoemission



# Photoemission







### ML DESIGN DEVELOPMENT BASED ON A-PERIODIC STRUCTURES

### ROLE OF STANDING WAVE FIELD DISTRIBUTION IN THE MLS

# Multilayer design for EUV lithography

### **THANK YOU**