### **Extreme Ultraviolet Source at 40 nm with Alkali Metal Vapor for Surface Morphology Applications**

#### Takeshi Higashiguchi<sup>1</sup>

Hiromitsu Terauchi<sup>1</sup>, Mami Yamaguchi<sup>1</sup>, Takamitsu Otsuka<sup>1</sup>, Noboru Yugami<sup>1,2</sup>, Rebekah D'Arcy<sup>3</sup>, Padraig Dunne<sup>3</sup>, and Gerry O'Sullivan<sup>3</sup>

Utsunomiya University, Utsunomiya, Japan
 JST CREST, Japan
 University College Dublin, Dublin, Ireland
 E-mail: higashi@cc.utsunomiya-u.ac.jp



2010 International Workshop on EUV Sources University College Dublin, Belfield, Dublin 4, Ireland Sunday 14 November, 2010, 4:30 PM – 6:00 PM

#### What's new

Observation of the spectra of a potassium plasma
Evaluation of the multiple charge state ions
Discussion of the possibility of the hollow cathode mode





#### **Publication**

APPLIED PHYSICS LETTERS 96, 131505 (2010)

#### Characteristics of extreme ultraviolet emission from a discharge-produced potassium plasma for surface morphology application

Takeshi Higashiguchi,<sup>1,2,a)</sup> Hiromitsu Terauchi,<sup>1</sup> Noboru Yugami,<sup>1,2</sup> Toyohiko Yatagai,<sup>1</sup> Wataru Sasaki,<sup>3</sup> Rebekah D'Arcy,<sup>4</sup> Padraig Dunne,<sup>4</sup> and Gerry O'Sullivan<sup>4</sup> <sup>1</sup>Department of Advanced Interdisciplinary Sciences, Center for Optical Research and Education (CORE), Utsunomiya University, Yoto 7-1-2, Utsunomiya, Tochigi 321-8585, Japan <sup>2</sup>Japan Science and Technology Agency, CREST, 4-1-8 Honcho, Kanagawa, Saitama 332-0012, Japan <sup>3</sup>NTP Inc., Gakuen Kibanadai Nishi 1-1, Miyazaki 889-2192, Japan <sup>4</sup>School of Physics, University College Dublin, Belfield, Dublin 4, Ireland

(Received 3 January 2010; accepted 2 March 2010; published online 1 April 2010)

We have demonstrated a discharge-produced microplasma extreme ultraviolet source based on a pure potassium vapor. Potassium ions produced strong broadband emission around 40 nm with a bandwidth of 8 nm (full width at half-maximum). The current-voltage characteristics of microdischarge suggest that the source operates in a hollow cathode mode. By comparison with atomic structure calculations, the broadband emission is found to be primarily due to 3d-3p transitions in potassium ions ranging from K<sup>2+</sup> to K<sup>4+</sup>. © 2010 American Institute of Physics.

### Applications by us







#### Cleaning of the grating



# Photo-stimulated desorption mass spectrometer using EUV emission





![](_page_5_Picture_0.jpeg)

#### We characterize the capillary discharge-

produced plasma XUV source by use of pure

alkali metal vapor.

# Schematic diagram of the experimental apparatus

![](_page_6_Figure_1.jpeg)

## Emission spectra from the different capillary inner diameters

![](_page_7_Figure_1.jpeg)

## Capillary inner diameter dependence of the emission energy

![](_page_8_Figure_1.jpeg)

## Comparison of experiments and numerical simulation

![](_page_9_Figure_1.jpeg)

## Discharge current dependence of timeintegrated electron temperature

![](_page_10_Figure_1.jpeg)

## Ion population of multi-charged potassium ions

![](_page_11_Figure_1.jpeg)

# Comparison between DPP and LPP at electron temperature of 12 eV

![](_page_12_Figure_1.jpeg)

Time-integrated spectra from a capillary discharge-produced plasma (a) and from a Nd:YAG laser-produced plasma (b) at the laser intensity of  $2 \times 10^{10}$  W/cm<sup>2</sup> with a focal spot size of 250  $\mu$ m (FWHM).

## Discharge current dependence of the XUV conversion efficiency

![](_page_13_Figure_1.jpeg)

## I-V dependence: Possibility of hollow cathode mode

![](_page_14_Figure_1.jpeg)

## Angular distribution of the XUV emission energy

![](_page_15_Figure_1.jpeg)

![](_page_16_Picture_0.jpeg)

## We have developed and observed the compact discharge-produced plasma XUV source at 40 nm.

- $\rightarrow$  We have characterized the emission spectra of a potassium plasma.
- ➔ We have evaluated the multiple charge state ions using the collisional-radiative (CR) model.
- ➔ We have discussed the possibility of the hollow cathode mode in a capillary discharge-produced potassium plasma.