Molecular Resists for Next Generation Lithography: A Rich Diversity of Possibilities

Clifford L. Henderson

School of Chemical & Biomolecular Engineering Georgia Institute of Technology

Materials Patterning:

A Diverse Challenge & Enabling Technology

Photolithography: High Volume Champ³

Chemically Amplified Resists (CARs):

The Modern Workhorse Material

Step 1. Acid Generation

Step 2. Acid-Catalytic Deprotection

RLS Tradeoff

Resolution³ × LER² × Sensitivity $\approx constant$

- There exists a now well known trade-off in resolution, LER, and sensitivity for chemically amplified resist materials
- RLS limitation is intrinsic to CARs → must reduce constant
- Modern CAR design at minimal constant performance still does not meet the requirements.

Challenges with Chemical Amplification Image Blur Line Edge Roughness (LER)

Mask
Photoresis
Substrate

Radiation
Microscopic
heterogeneous
deprotection
Rough
line edge

Broadening of the patterned feature size

Traditional CAR photoacid diffusivity: > 10 nm

Traditional CAR 3σLER: > 5 nm

Material Designs to Solve RLS

- Base Quencher shown to reduce LER and improve resolution, but at cost of sensitivity
- Molecular Resists reduce pixel size to improve LER

Polymer-bound PAGs

- reduce photoacid diffusion length to improve resolution
- has shown LER improvements
- sensitivity penalty reduced by increased PAG loading
- several years into development only recently began 22 nm patterning – LER still greater than desired

The Road to Molecular Resists

Advantages vs. Polymers

- 1. Reduced pixel size
- 2. Synthetic control
 - monodisperse
 - stereo- and regio-chemical control
- 3. Development
 - no microscopic heterogeneous deprotection
 - reduced swelling
 - high molecular chemical contrast

Current Molecular Resists

- Based on blending PAG and base into molecular glass matrix
- 50 nm resolution or better
- LER (3σ) of 6 nm or less

Da Yang, et. al., J. Materials Chemistry 2006

completely soluble

completely insoluble

Molecular Resists: An Unfulfilled Promise?

- Most all blended molecular resists have LER (3σ) of 5 nm or more
- Inhomogenities have significant effect on LER
- Inhomogenities due to physically blended additives, polydisperse molecular weights – e.g. varying levels of protecting group

Resolution in molecular resists also limited to due to diffusion of

typically small blended acids

Some Possible Solutions:

Single Molecule Resists
Negative Tone MRs

Increasing homogeneity

Decreasing LER

Shiono, et al. SPIE 6519, 65193U, (2007)

Pawloski, et al. SPIE 5376, 414, (2004)

Single Component

Positive Tone

VS.

Multi-Component

VS.

Negative Tone

Aqueous Development

VS.

Solvent Development

Chemically Amplified

vs.

Non-Amplified (Inhibited)

Single Component

Positive Tone

vs. Multi-Component

vs. Negative Tone

Single Molecule CARs

 A molecular resist that contains PAG functionality and acid labile protecting groups on a base soluble, etch resistant molecular glass core.

PAG functionality

Acid Labile Protecting Group

Etch Resistance

Advantages:

- 1. Molecularly homogeneous resist film
- 2. Highest PAG loading possible with no PAG segregation
- 3. Binding photoacid to molecular glass allows control of acid diffusion
 - resolution and LER improved
 - loss of photospeed offset by high PAG loading.

TAS-tBoc-SbF₆ **EUV** Results

- EUV exposures done on PSI tool in Switzerland
- 50 nm 1:1 lines resolved with low LER of 4.9 nm
- 30 nm 1:1 lines open only att very high dose
- Failure not due to acid blur, but due to pattern collapse/diffusion limitations

LER $(3\sigma) = 4.9 \text{ nm}$

Single Molecule Bound Sulfonic Acids

- Design covalently binds sulfonic acid moiety directly to larger molecular glass core to control photoacid diffusion - improving both resolution and LER
- Next generation evolution of molecular resists and polymer-bound PAG resists
- Resist design space greatly increased compared to TAS allowing for systematic variation of each component
- Multi-functional cores allow selective attachment of acid and PAG, maintaining high homogeneity in a complex molecule
- Acid can be selectively attached to core or designed directly on the core
- Non-ionic PAGs now available to improve solubility issues with TAS

NBB: NDI-BHMOBS-Boc

- NBB first example of non-ionic bound sulfonic acid molecule resist
- Sulfonic acid is directly part of molecular glass core
- Norbornene dicarboximide PAG
- Superior solubility in casting solvent as compared to TAS compounds
- Has good adhesion and forms excellent films
- Zero dark loss over 30 sec. development in 0.261N TMAH

NDI-BHMOBS-tBoc E-beam Litho

- NDI-BHMOBS-tBoc shows poor sensitivity under 100 keV e-beam ~ 3x of TAS
- Excellent image quality and resolution, down to at least 40 nm 1:3 lines/space
- No appreciable acid blur, even at 90°C PEB, above Tg
- Excellent LER (3σ) = 4.8 nm
- Suffers from pattern collapse starting at 60 nm 1:1 lines (aspect ratio > 2) using current developer and rinse protocols

Single Component

Positive Tone

VS.

Multi-Component

vs.

Negative Tone

Chemical Amplification & Acid Diffusion:

A Necessary Curse?

Step 1. Acid Generation

Step 2. Acid-Catalytic Deprotection

Advantages of Cationic Polymerization

- Most high resolution CARs are based on photoacid catalyzed deprotection of protecting groups
- CARs based on cationic polymerization have been used for many years for micropatterning – SU-8

- Potential advantages of cationic polymerization CARs
 - superior mechanical strength high MW cross-linked film
 - superior environmental stability highly stable cationic chain propagation controls conversion
 - intrinsic diffusion control active cation directly attached to exponentially growing chain/network
 - no outgassing zero mass loss process

Still More Problems: Resist Pattern Collapse

Synthesis of Resists

 Molecular resist core made by acid-catalyzed condensation of phenol with a ketone or aldehyde

Core functionalized by reaction with epichlorohydrin in the presence of base

Final product purified by recrystallization or column chromatography

Comparison of Epoxide MR E-

- Resolution increases as functionality decreases
- Maximum aspect ratio increases as functionality increases

SU-8 E-beam Litho

- SU-8 is a well-known CA epoxide resist
- SU-8 shown in literature to produce isolated lines down to sub-30 nm
- SU-8 2000 used after dilution in PGMEA to form thin films, 60 C PEB
- 70 nm 1:1 begins to show bridging and line "wobble"

SU-8 vs. Epoxide Molecular Resist

- SU-8 shows inferior resolution and LER to 4-Ep
- Swelling appears to be main failure for SU-8
- Differences likely due to extent of cross-linking in molecular resist 4-Ep compared to oligomeric SU-8

Further Improvements: Quenchers?

 Even up to very high base loadings (1:1 PAG:base), the base has little effect on the cross-linking

Base Quencher Ineffective in Epoxide Resists

$$H^{+}MX_{n} + O \longrightarrow K_{dp} \longrightarrow C \longrightarrow H^{+}MX_{n}$$

$$H^{+}MX_{n} + R_{B} \stackrel{R_{B}}{N}R_{B} \longrightarrow R_{B} \stackrel{R_{B}}{N}R_{B}$$

$$R_{B} \stackrel{N}{N}R_{B} \stackrel{R_{B}}{N}MX_{n}$$

 In standard CARs, the photoacid is regenerated after each reaction. The base acts to quench the acid and reduce catalytic chain length.

$$H^{+}MX_{n} + O R \xrightarrow{k_{H}} HO \xrightarrow{R} TMX_{n}$$

$$HO \xrightarrow{R} TMX_{n} + O R \xrightarrow{k_{H}} HO \xrightarrow{R} TMX_{n}$$

$$R \xrightarrow{k_{H}} TMX_{n}$$

$$R \xrightarrow{k_{H}} TMX_{n}$$

$$R \xrightarrow{k_{H}} TMX_{n}$$

$$R \xrightarrow{k_{H}} TMX_{n}$$

 In cationic polymerization CARS, the photoacid reacts only once. The active cation is the species that gets regenerated after each reaction. Base has less effect on the active cation.

Nucleophilic Quenchers

What will act to quench a cationic polymerization?

A strong nucleophile such as a triflate anion.

Photo-Decomposable Nucleophile (PDN)

- Addition of strong nucleophile shows significant effect in quenching
- Only needs to terminate polymerization outside the exposed region
- What type of chemical can achieve this??

PDN

$$V_{R} = V_{R} =$$

- TPS-Tf added to 4-Ep formulation
- Triflic acid acts like chain transfer agent regenerating the initial photoacid

Photo-Decomposable Quencher – TPS-Tf

- Behavior looks like reduced PAG loading at low dose, but can obtain the same performance as no additive
- performance as no additive

 Has benefits of nucleophilic quencher with less drawbacks

• Contrast improved ($\gamma_0 = 0.49$, $\gamma_{1:4} = 1.14$, $\gamma_{1:2} = 1.13$)

TPS-SbF₆

TPS-Tf

4Ep EUV at PSI PEB 60°C with TPS-SbF_{6/}TPS-Tf

- Modified resist formulation, 1:2 TPS-Tf:TPS-SbF₆
- Dose-to-size = 15 mJ/cm² (Dose-to-Mask = 45 mJ/cm² July 08)
- LER $(3\sigma) = 4.0 \text{ nm for } 50 \text{ nm lines}$
- LER $(3\sigma) = 4.5 \text{ nm for } 25 \text{ nm lines}$

Aqueous Development

VS.

Solvent Development

Chemically Amplified

VS.

Non-Amplified (Inhibited)

TMAH Developed Epoxides

- These systems have excellent performance under both ebeam and EUV, but they are developed in organic solvents.
- The industry standard for development is aqueous base solutions of 0.26N TMAH.
- This concept is extendable to aqueous base development with the design of new resist molecules and blends.

Non-Blended Designs

Blended Designs

Base Developed Epoxides – Blended Resists

Effect of PEB

- Shows similar behavior in solvent and base
- $\gamma = 4.2 \text{ in AZ300}$
- Can be reasonably imaged with no PEB due to additional etherification mechanism
- High resolution imaging currently underway

Aqueous Development

Chemically Amplified

VS.

Solvent Development

VS.

Non-Amplified (Inhibited)

Non-Amplified Resists

Positive Tone

- DNQ/Novalac DNQ inhibits dissolution of novalac, undergoes Wolff rearrangement to become dissolution promoter – requires water during exposure to operate in positive tone mode
- PMMA chain scission reduction in MW leads to solubility difference – electronics/absorbance of chain can be altered to improve photosensitivity, but still limited

Negative Tone

HSQ/Acetyl or Chlorobenzyl Calixarenes –
photoinduced radical generation which induces crosslinking – high resolution, but relatively large number of
cross-links required to render insoluble – low
sensitivity

Non-Amplified Resists

- These designs have minimal ways to improve sensitivity
- The dissolution inhibitor (DI) resists can be potentially be made very sensitive (but not with DNQ).
- Dls using photosensitive protecting groups were investigated in early 1980s (pre-CARs).
- Huge amount of literature on photosensitive protecting groups in total synthesis – most non-ionic PAG chromophores can be applied as photosensitive protecting groups.
- Molecular resists provide precise control of functionality needed for high resolution non-amplified resists.
- Molecular resist dissolution behavior means that very high amounts of DI are required to render the film insoluble.

Predictive Modeling Is Possible in MRs

- We have greatly improved the understanding of the dissolution behavior of molecular resists
- The previous work has only been done for pure components, but an actual resist consists of a mixture of soluble and insoluble species.
- A study has been carried out to understand this effect on the dissolution of actual molecular resists.

1st Gen Non-Amplified MRs

- Desire to investigate ultimate tradeoffs in non-amplified vs. CA resists
- No high sensitivity positive tone non-CA resists reported for high resolution imaging
- DNQ cannot be used because Wolff rearrangement requires in-situ water DNQ in vacuum leads to cross-linking
- Designs based on dissolution inhibition by compounds with photosensitive functional groups
- Should provide some learning on future single component systems

NBnHPF

- Synthesized by Williamson etherification, purified by simple column
- Can be imaged as single component system or imaged as blended system (with BHPF)

Single Component

Blended System

NMR of NBnHPF

Materials can be isolated as clean pure compounds!

NBnHPF/C4MR Blends

- Cleanly dissolves in 0.26N TMAH no apparent delamination on HMDS primed surfaces
- Sensitivity adjustable by formulation 0, 10, 20, 25% C4MR in NBnHPF – down to 1 mJ/cm2 at 248 nm exposures
- 20% C4MR has senstivity of 10 mJ/cm2 with contrast of 8.26 under DUV
- Might be faster under EUV due to potentially improved photoreaction rate constant of NBn PPG (photoactive protecting group).

Summary

- Molecular resists offer a rich class of materials for next generation resists
 - Ability to synthesize and isolate pure, single species an inherent advantage
- Predictive materials design modeling tools have been developed
 - Predict Tg, solubility, dissolution rate,...
- Outstanding results have been demonstrated in early negative tone materials
 - Low LER, very high sensitivity, very high resolution
- A new method for "diffusion control" has been developed and demonstrated in negative tone MRs using PDNs
- Single component MRs have been demonstrated
- Highly sensitive non-amplified MRs have been developed

Learning how far platforms can be pushed...

4-Ep PSI 25 nm 1:1 15 mJ/cm² LWR: 5-6 nm

Acknowledgements

- Intel Corporation for funding support
- Todd Younkin, Steve Putna, Jeanette Roberts, and Wang Yueh at Intel for helpful discussions.
- Harun Solak, Vaida Auzelyte, and Anja Weber at PSI for EUV exposures

