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2Materials Patterning: 
A Diverse Challenge & Enabling Technology
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3Photolithography: High Volume Champ
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4Chemically Amplified Resists (CARs): 
The Modern Workhorse Material

Step 1. Acid Generation

Step 2. Acid-Catalytic Deprotection

Photoacid generator
(PAG), < 5 wt%

polymer resin, > 95 wt%

Acid-catalytic reaction

Switch polymer polarity

(PEB)
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5RLS Tradeoff

• There exists a now well known trade-off in resolution, LER, and 
sensitivity for chemically amplified resist materials

• RLS limitation is intrinsic to CARs → must reduce constant
• Modern CAR design at minimal constant - performance still does not 

meet the requirements. 

constant≈×× ySensitivitLERResolution 23

areaconstant ∝

Resolution

Sensitivity

LER

Sensitivity

Resolution

LER

Improved CAR design
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6
Challenges with Chemical Amplification

Image Blur              Line Edge Roughness (LER)

100 nm

> 150 nm

Traditional CAR 3σLER:  > 5 nm
Traditional CAR photoacid diffusivity:  > 10 nm
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Material Designs to Solve RLS
• Base Quencher – shown to reduce LER and improve resolution, but 

at cost of sensitivity
• Molecular Resists – reduce pixel size to improve LER 

UNCC-GT-Intel
program

• Polymer-bound PAGs 
– reduce photoacid diffusion length to improve 

resolution
– has shown LER improvements 
– sensitivity penalty reduced by increased PAG 

loading
– several years into development – only recently 

began 22 nm patterning – LER still greater than 
desired
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1. Reduced pixel size
2. Synthetic control 

• monodisperse
• stereo- and regio-chemical control

3. Development
• no microscopic heterogeneous 

deprotection 
• reduced swelling
• high molecular chemical contrast

The Road to Molecular Resists

5~10 nm

polymer
(50 

repeat 
units) PAG

monomer

Da Yang, et. al., J. Materials Chemistry 2006

completely soluble completely insoluble 

• Based on blending PAG and base 
into molecular glass matrix

• 50 nm resolution or better
• LER (3σ) of 6 nm or less

Advantages vs. Polymers

Current Molecular Resists
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Molecular Resists: An Unfulfilled Promise?
• Most all blended molecular resists have LER (3σ) of 5 nm or more
• Inhomogenities have significant effect on LER
• Inhomogenities due to physically blended additives, polydisperse 

molecular weights – e.g. varying levels of protecting group
• Resolution in molecular resists also limited to due to diffusion of 

typically small blended acids

• Some Possible Solutions:
Single Molecule Resists
Negative Tone MRs

Increasing homogeneity
Decreasing LER

Shiono, et al. SPIE 6519, 65193U, (2007) Pawloski, et al. SPIE 5376, 414, (2004)



School of Chemical & Biomolecular Engineering Georgia Tech

10

Opportunities with Molecular Resists
• Single Component                    vs.               Multi-Component

• Positive Tone                             vs.               Negative Tone
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Opportunities with Molecular Resists
• Aqueous Development                    vs.               Solvent Development

• Chemically Amplified                vs.             Non-Amplified (Inhibited)
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Opportunities with Molecular Resists
• Single Component                    vs.               Multi-Component

• Positive Tone                             vs.               Negative Tone
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Single Molecule CARs

• A molecular resist that contains PAG functionality and acid labile 
protecting groups on a base soluble, etch resistant molecular glass 
core.

Advantages:
1. Molecularly homogeneous resist film
2. Highest PAG loading possible with no PAG segregation
3. Binding photoacid to molecular glass allows control of acid diffusion

– resolution and LER improved
– loss of photospeed offset by high PAG loading.
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14TAS-tBoc-SbF6 EUV Results

• EUV exposures done on PSI 
tool in Switzerland

• 50 nm 1:1 lines resolved with 
low LER of 4.9 nm

• 30 nm 1:1 lines open only att 
very high dose

• Failure not due to acid blur, 
but due to pattern 
collapse/diffusion limitations

200 nm

50 nm 1:1

60 mJ/cm2
200 nm

30 nm 1:1

125 mJ/cm2

LER (3σ) = 4.9 nm
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Single Molecule Bound Sulfonic Acids

Photoacid Generator

Sulfonic Acid

Molecular Glass Core

Protecting Groups

• Design covalently binds sulfonic acid moiety directly to larger molecular glass core to 
control photoacid diffusion - improving both resolution and LER

• Next generation evolution of molecular resists and polymer-bound PAG resists
• Resist design space greatly increased compared to TAS allowing for systematic variation 

of each component
• Multi-functional cores allow selective attachment of acid and PAG, maintaining high 

homogeneity in a complex molecule
• Acid can be selectively attached to core or designed directly on the core
• Non-ionic PAGs now available to improve solubility issues with TAS 
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16NBB : NDI-BHMOBS-Boc

Photoacid 
Generator

Sulfonic Acid
Molecular Glass Core

Protecting Group

• NBB first example of non-ionic bound sulfonic acid molecule resist
• Sulfonic acid is directly part of molecular glass core
• Norbornene dicarboximide PAG
• Superior solubility in casting solvent as compared to TAS compounds
• Has good adhesion and forms excellent films
• Zero dark loss over 30 sec. development in 0.261N TMAH

90% 70% 45% 54%
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17NDI-BHMOBS-tBoc E-beam Litho
• NDI-BHMOBS-tBoc shows poor sensitivity 

under 100 keV e-beam ~ 3x of TAS
• Excellent image quality and resolution, 

down to at least 40 nm 1:3 lines/space
• No appreciable acid blur, even at 90oC 

PEB, above Tg
• Excellent LER (3σ) = 4.8 nm
• Suffers from pattern collapse starting at 60 

nm 1:1 lines (aspect ratio > 2) using 
current developer and rinse protocols

100 nm 1:1 90 nm 1:1 80 nm 1:1 70 nm 1:1 60 nm 1:2 50 nm 1:3 40 nm 1:3

90oC PEB

γ = 5.8
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Opportunities with Molecular Resists
• Single Component                    vs.               Multi-Component

• Positive Tone                             vs.               Negative Tone
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19Chemical Amplification & Acid Diffusion:
A Necessary Curse? 

Step 1. Acid Generation

Step 2. Acid-Catalytic Deprotection

Photoacid generator
(PAG), < 5 wt%

polymer resin, > 95 wt%

Acid-catalytic reaction

Switch polymer polarity

(PEB)
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• Potential advantages of cationic polymerization CARs 
– superior mechanical strength – high MW cross-linked film 
– superior environmental stability – highly stable cationic chain 

propagation controls conversion
– intrinsic diffusion control – active cation directly attached to 

exponentially growing chain/network
– no outgassing – zero mass loss process

20Advantages of Cationic Polymerization
• Most high resolution CARs are based on photoacid 

catalyzed deprotection of protecting groups 
• CARs based on cationic polymerization have been 

used for many years for micropatterning – SU-8
microchem.com
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21Still More Problems:
Resist Pattern Collapse

Photoresist

Exposed
Regions

Negative TonePositive Tone

Development

Exposure
PEB

Rinse

Dry

Thin film
Silicon substrate

θ

F

θ

F

500 nm200 nm

Resist line bending 
or breakage

Resist adhesion
failure
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2222Synthesis of Resists
• Molecular resist core made by acid-catalyzed condensation of 

phenol with a ketone or aldehyde

• Core functionalized by reaction with epichlorohydrin in the presence 
of base

• Final product purified by recrystallization or column chromatography
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Comparison of Epoxide MR E-
beam• Resolution increases as functionality decreases

• Maximum aspect ratio increases as functionality increases

2-Ep                                          3-Ep                               4-Ep

75 μC/cm2 (100keV)
t = 50 nm

LER = 2.8 nm

50 μC/cm2

t = 110 nm
LER = 2.3 nm

50 μC/cm2

t = 70 nm
LER = 2.3 nm

23

50 nm 1:1

60 nm
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24SU-8 E-beam Litho

• SU-8 is a well-known CA epoxide resist
• SU-8 shown in literature to produce isolated lines down to sub-30 nm 
• SU-8 2000 used after dilution in PGMEA to form thin films, 60 C PEB
• 70 nm 1:1 begins to show bridging and line “wobble”

100 nm 1:1 70 nm 1:1
SU-8
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25SU-8 vs. Epoxide Molecular Resist

• SU-8 shows inferior resolution and LER to 4-Ep
• Swelling appears to be main failure for SU-8
• Differences likely due to extent of cross-linking in molecular 

resist 4-Ep compared to oligomeric SU-8 

55 nm 1:2 50 nm 1:2 35 nm 1:2        35nm 1:3      SU-8

4-Ep
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Further Improvements: Quenchers?

• Even up to very high base loadings (1:1 
PAG:base), the base has little effect on the 
cross-linking

DUV Contrast PEB 60oC 4-Ep
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Base Quencher Ineffective in Epoxide Resists

• In standard CARs, the photoacid is regenerated after each 
reaction. The base acts to quench the acid and reduce 
catalytic chain length.

• In cationic polymerization CARS, the photoacid reacts only 
once. The active cation is the species that gets regenerated 
after each reaction. Base has less effect on the active cation.
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28Nucleophilic Quenchers
• What will act to quench a cationic 

polymerization? 
A strong nucleophile such as a triflate anion.

DUV Contrast PEB 60oC

Added to 4-Ep
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Photo-Decomposable Nucleophile (PDN)
• Addition of strong nucleophile shows significant effect in quenching 
• Only needs to terminate polymerization outside the exposed region
• What type of chemical can achieve this??

• TPS-Tf added to 4-Ep formulation
• Triflic acid acts like chain transfer agent – regenerating the initial 

photoacid

PDN
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30Photo-Decomposable Quencher – TPS-Tf
• Behavior looks like reduced PAG loading at 

low dose, but can obtain the same 
performance as no additive 

• Has benefits of nucleophilic quencher with 
less drawbacks

• Contrast improved (γ0 = 0.49, γ1:4 = 1.14, γ1:2 = 
1.13) 

DUV Contrast PEB 60oC DUV Contrast PEB 90oC
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4Ep EUV at PSI PEB 60oC with TPS-SbF6/TPS-Tf

• Modified resist formulation,  1:2 TPS-Tf:TPS-SbF6

• Dose-to-size = 15 mJ/cm2 (Dose-to-Mask = 45 mJ/cm2 July 08)
• LER (3σ) = 4.0 nm for 50 nm lines
• LER (3σ) = 4.5 nm for 25 nm lines

50 nm 30 nm 25 nm 22 nm
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Opportunities with Molecular Resists
• Aqueous Development                    vs.               Solvent Development

• Chemically Amplified                vs.             Non-Amplified (Inhibited)
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TMAH Developed Epoxides
• These systems have excellent performance under both e-

beam and EUV, but they are developed in organic solvents.
• The industry standard for development is aqueous base 

solutions of 0.26N TMAH.
• This concept is extendable to aqueous base development 

with the design of new resist molecules and blends.

Non-Blended Designs Blended Designs
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Base Developed Epoxides – Blended Resists

• Shows similar behavior in solvent and base 
• γ = 4.2 in AZ300
• Can be reasonably imaged with no PEB – due to additional 

etherification mechanism 
• High resolution imaging currently underway

Base vs. Solvent Developed Effect of PEB 
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Opportunities with Molecular Resists
• Aqueous Development                    vs.               Solvent Development

• Chemically Amplified                vs.             Non-Amplified (Inhibited)
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36Non-Amplified Resists
• Positive Tone

– DNQ/Novalac – DNQ inhibits dissolution of novalac, 
undergoes Wolff rearrangement to become 
dissolution promoter – requires water during exposure 
to operate in positive tone mode

– PMMA – chain scission – reduction in MW leads to 
solubility difference – electronics/absorbance of chain 
can be altered to improve photosensitivity, but still 
limited

• Negative Tone
– HSQ/Acetyl or Chlorobenzyl Calixarenes –

photoinduced radical generation which induces cross-
linking – high resolution, but relatively large number of 
cross-links required to render insoluble – low 
sensitivity
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37Non-Amplified Resists
• These designs have minimal ways to improve sensitivity
• The dissolution inhibitor (DI) resists can be potentially be 

made very sensitive (but not with DNQ).
• DIs using photosensitive protecting groups were 

investigated in early 1980s (pre-CARs). 
• Huge amount of literature on photosensitive protecting 

groups in total synthesis – most non-ionic PAG 
chromophores can be applied as photosensitive 
protecting groups.

• Molecular resists provide precise control of functionality 
needed for high resolution non-amplified resists. 

• Molecular resist dissolution behavior means that very 
high amounts of DI are required to render the film 
insoluble.
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Predictive Modeling Is Possible in MRs

• We have greatly improved the understanding of the dissolution behavior of 
molecular resists

• The previous work has only been done for pure components, but an actual 
resist consists of a mixture of soluble and insoluble species.

• A study has been carried out to understand this effect on the dissolution of 
actual molecular resists.

reqOH
D

DDR +
−+

=
)logexp(1

loglog
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391st Gen Non-Amplified MRs

• Desire to investigate ultimate tradeoffs in non-amplified vs. CA resists
• No high sensitivity positive tone non-CA resists reported for high resolution 

imaging
• DNQ cannot be used because Wolff rearrangement requires in-situ water –

DNQ in vacuum leads to cross-linking
• Designs based on dissolution inhibition by compounds with photosensitive 

functional groups
• Should provide some learning on future single component systems

Ex. 1

Ex. 2
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40NBnHPF

• Synthesized by Williamson etherification, purified by 
simple column

• Can be imaged as single component system or imaged 
as blended system (with BHPF)

Single Component

100%

Blended System

25-50% 50-75%
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41NMR of NBnHPF
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CHCl3

J K L M

MMaterials can be 
isolated as clean 
pure compounds!
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42NBnHPF/C4MR Blends

• 55 nm thick film
• Processed with No PEB
• Cleanly dissolves in 0.26N TMAH – no apparent delamination on 

HMDS primed surfaces
• Sensitivity adjustable by formulation - 0, 10, 20, 25% C4MR in 

NBnHPF – down to 1 mJ/cm2 at 248 nm exposures
• 20% C4MR has senstivity of 10 mJ/cm2 with contrast of 8.26 under 

DUV
• Might be faster under EUV due to potentially improved photoreaction 

rate constant of NBn PPG (photoactive protecting group). 

NBnHPF C4MR
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4343Summary
• Molecular resists offer a rich class of materials for next generation 

resists
– Ability to synthesize and isolate pure, single species an inherent advantage

• Predictive materials design modeling tools have been developed
– Predict Tg, solubility, dissolution rate,…

• Outstanding results have been demonstrated in early negative tone 
materials

– Low LER, very high sensitivity, very high resolution
• A new method for “diffusion control” has been developed and 

demonstrated in negative tone MRs using PDNs
• Single component MRs have been demonstrated
• Highly sensitive non-amplified MRs have been developed
• Learning how far platforms can be pushed…

4-Ep 
PSI
25 nm 1:1
15 mJ/cm2

LWR: 5-6 nm
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