### Multilayer optics for next-generation EUVL systems

#### **Regina Soufli**

regina.soufli@llnl.gov

Lawrence Livermore National Laboratory

2009 International Workshop on EUV Lithography, Honolulu, Oahu July 16, 2009



This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

### **Key Contributors**



**Eberhard Spiller Russell Hudyma** Eric Gullikson (LBNL) John S. Taylor **Gary Sommargren** Michael A. Johnson **Jim Folta Don Sweeney Chris Walton** Andy Aquila (LBNL) Franklin Dollar (LBNL)

Jeff C. Robinson Sherry Baker Jay Ayers Shannon Ayers Susan Ratti Mark Schmidt Fred Grabner **Rick Levesque** 

### **Presentation Outline**



- General principles of EUVL optical substrates, multilayer coatings, roughness and scattering, precision surface metrology
- Example #1: 0.30-NA Micro-Exposure Tool (MET) (two-mirror micro-field system)
- Example #2: 0.1-NA Engineering Test Stand (ETS) (four-mirror scanning system)
- Example #3: EUVL collector substrates, polyimide smoothing
- EUV multilayer optics for solar physics
- Diffraction limited x-ray mirrors for free-electron lasers

### **EUVL requires all-reflective optical systems**



Regina Soufli, 07/15/09

### In the EUV/x-ray range, the reflective performance of materials is governed by the effect of total external reflection

> EUV/x-ray region coincides with core electron binding energies  $\rightarrow$ strong absorption. Refractive index n is expressed as a complex number: n = 1-  $\delta$  + i $\beta$ , where  $\delta$ ,  $\beta$  << 1

► For grazing incidence angles  $\theta \le \theta_c \approx \sqrt{2\delta}$ , total external reflection occurs (similar to the "total internal reflection" effect at visible wavelengths, per Snell's law)

D. T. Attwood, Soft X-rays and Extreme Ultraviolet Radiation, Principles and Applications, Cambridge University Press (1999).

 $\geq \theta_c \sim \lambda \sqrt{Z}$ 

E. Spiller, *Soft X-ray Optics*, SPIE Press, Bellingham, WA (1994).







### **Multilayer interference coatings**



# Multilayer materials selection is driven by optical properties



 have good optical contrast in the desired energy region of operation

be chemically compatible with each other

✓ form stable interfaces



Multilayer microstructure and stress properties depend on deposition method,  $\Gamma$ -ratio and layer thicknesses





R. Soufli, D. L. Windt, J. C. Robinson, et al, "Development and testing of EUV multilayer coatings for the atmospheric imaging assembly instrument aboard the Solar Dynamics Observatory", Proc. SPIE 5901, 59010M (2005).





#### Highly reflective and precise multilayer optics enable normalincidence imaging at EUV wavelengths





## The Engineering Test Stand (ETS) employs a 0.1-NA ring-field imaging system for a 24-mm field of view



D. A. Tichenor et al., "System integration and performance of the EUV Engineering Test Stand," Proc. SPIE 4343, 19–37 (2001).

#### Four ETS Set 2 camera substrates on their mounting fixtures





#### ETS substrates made by Tinsley

#### The Micro-Exposure Tool (MET ) provides early learning with a high-NA imaging system





**Carl Zeiss manufactured the MET camera substrates** 

# EUVL substrates need to satisfy stringent figure and finish specifications



|                  | SET 1   |      |      |        |      |      |
|------------------|---------|------|------|--------|------|------|
|                  | Figure  | MSFR | HSFR | Figure | MSFR | HSFR |
| MET 1 (primary)  | 0.43    | 0.23 | 0.49 | 0.18   | 0.28 | 0.37 |
|                  | 0.43    | 0.33 | 0.54 | 0.22   | 0.25 | 0.38 |
| MET 2 (secondary | () 0.25 | 0.34 | 0.38 | 0.22   | 0.30 | 0.32 |
|                  | _       | 0.46 | 0.38 | —      | 0.28 | 0.37 |
| Specification    | 0.33    | 0.30 | 0.50 | 0.25   | 0.20 | 0.40 |
|                  |         |      |      |        |      |      |

| <ul> <li>measured by Carl Zeiss</li> <li>measured by LLNL</li> </ul> | Figure errors lead to imaging aberrations –loss of resolution |
|----------------------------------------------------------------------|---------------------------------------------------------------|
| All numbers given in <u>nm rms</u>                                   | MSFR leads to flare, loss of contrast                         |
|                                                                      | HSFR leads to loss of reflectance (throughput)                |

U. Dinger, G. Seitz, S. Schulte, et al., "Fabrication and metrology of diffraction-limited soft x-ray optics for the EUV microlithography," *Proc. SPIE* 5193, 18–28 (2004).

R. Soufli, R. M. Hudyma, E. Spiller, et al., "Sub-diffraction-limited multilayer coatings for the 0.3 numerical aperture micro-exposure tool for extreme ultraviolet lithography," *Appl. Opt.* 46, 3736–3746 (2007).

# EUVL optics require state-of-the-art surface metrology for the figure, mid- and high spatial frequency ranges





## Visible-light, phase-shifting diffraction interferometry was used at LLNL to measure EUVL camera optics





Sommargren, G.E., "Phase shifting diffraction interferometry for measuring extreme ultraviolet optics," OSA Trends in Optics and Photonics Vol. 4, *Extreme Ultraviolet Lithography*, Kubiak and Kania, eds. (Optical Society of America, Washington, DC 1996), pp. 108-112.

G. E. Sommargren, D. W. Phillion, M. A. Johnson, N. Q. Nguyen, A. Barty, F. J. Snell, D. R. Dillon, L. S. Bradsher, "100-picometer interferometry for EUVL", Proc. SPIE 4688 316-328 (2002).

#### DC-magnetron sputtering is a proven deposition technique for the multilayer-coating of EUVL camera and collector optics





Underneath view of LLNL chamber lid with 5 sputtering targets



#### LLNL cleaning facility for optical substrates





Custom-developed process includes: rinsing in a waterbased solution, followed by drying in N<sub>2</sub> environment using semiconductor-grade system (*YieldUp*<sup>TM</sup>, pictured). Located next to multilayer deposition system.



LLNL AFM images on a Zerodur AIA flight substrate: (i), (ii) as-received and (iii), (iv) after cleaning.

R. Soufli, S. L. Baker, et. al, Appl. Opt. 46, 3156-3163 (2007).

### The reflectometry and scattering beamline 6.3.2 at the ALS synchrotron (LBNL) is used for at-wavelength characterization of EUV/x-ray optics





#### Velocity modulation is a rapidly converging method used for ultra-precise multilayer film thickness control





1.00

0

10

20

Radins (mm)

30

40

50

3. Measure results on test optic and iterate

## DC-magnetron sputtered coatings using velocity modulation demonstrate excellent process stability





Multilayer thickness profiles deposited over a period of 11 months using identical coating recipes

Coating profile for EUVL camera optics is optimized for lowest added figure error, rather than peak-to-valley thickness variation





## We have developed projection optics with sub-diffraction-limited performance during the EUVL program





R. Soufli et al., Appl. Opt. 46, 3736-3746 (2007)

Normalized film thickness

Substrate roughness "propagates" through the multilayer stack and causes flare and loss in mirror reflectance due to scattering in non-specular directions

J. Appl. Phys., Vol. 84, No. 2, 15 July 1998





10 λ = 12.8 nm (a) 10 10 10 -50 -40 -30 -20 -10 0 10 20 30 40 50 10 a = 13.0 nm (b) Scattered Power (1/P<sub>0</sub>) dP/dΩ 10 10 10 -40 -30 -20 -10 0 10 20 30 40 10 λ = 13.2 nm (c) 10 10 10 -40 -30 -20 -10 0 10 20 30 10 (d)  $\lambda = 13.4 \text{ nm}$ 10 10 10 -50 -40 -30 -20 -10 0 10 20 30 40 50 Scattering Angle (deg)

FIG. 11. Nonspecular scattering measured from the canonical Mo–Si multilayer film at normal incidence and for several different wavelengths. Data within four degrees of the specular direction is obscured by the wings of the specularly reflected beam. The solid lines are the scattering distributions predicted by the theory, based on the measured roughness of the multilayer film.

D.G. Stearns, D. P. Gaines, D. W. Sweeney and E. M. Gullikson, "Non-specular x-ray scattering in a multilayer-coated imaging system", J. App. Phys. 84, 1003-1028 (1998).



#### LLNL precision surface metrology lab

- Digital Instruments Dimension 5000<sup>™</sup> Atomic Force Microscope (AFM) includes acoustic hood and vibration isolation. Noise level = 0.03 nm rms
- Zygo NewView<sup>™</sup> Optical Profiling Microscope
- LEO 1560 ™ Scanning Electron Microscope (SEM)









## Detailed models have been developed and validated experimentally for the scattering from multilayer-coated EUV optics





D. G. Stearns, "Stochastic model for thin film growth and erosion," Appl. Phys. Lett. 62, 1745-7 (1993).

E. M. Gullikson, "Scattering from normal incidence EUV optics", Proc. SPIE 3331, 72-80 (1998).

D.G. Stearns et al, "Non-specular x-ray scattering in a multilayer-coated imaging system", J. App. Phys. 84, 1003-1028 (1998).

## HSFR non-uniformity leads to EUV reflectance variations on the multilayer-coated optic





2D contour maps of ETS optic M2 obtained at ALS beamline 6.3.2

We have developed EUV multilayer optics and precision metrologies for next-generation EUV solar physics and space weather satellites









Multilayer-coated flight mirrors for NASA's Solar Dynamics **Observatory (SDO). Launch date: November 2009** 

R. Soufli, et al, Appl. Opt. 46, 3156-3163 (2007).

R. Soufli, et al, Proc. SPIE 5901, 59010M (2005).

7 EUV wavelengths (9.4 nm to 33.5 nm)





Multilayer-coated test mirrors for NASA/NOAA's GOES-R space weather satellite. 6 EUV wavelengths , 9.4 nm to 30.4 nm. Launch date: 2014





LOCKH Regina Soufli, 07/15/09











### LLNL AFM measurements on NASA flight substrates reveal surface morphology related to specific polishing techniques





Measured EUV reflectance of multilayer-coated NASA mirrors is consistent with substrate roughness measured by AFM at LLNL





 $^{*}\Delta R$  = predicted reflectance loss due to high-spatial frequency roughness, based on AFM measurements of the substrate and on a multilayer growth model. Calculation performed by E. M. Gullikson, LBNL.

# EUVL collector optics require special substrate materials and polishing techniques





|           | HSFR<br>0.05 μm < Λ < 2 μm |  |  |  |
|-----------|----------------------------|--|--|--|
| Process 1 | 0.30 nm rms                |  |  |  |
| Process 2 | 0.84 nm rms                |  |  |  |

D. S. Martínez-Galarce, P. Boerner, R. Soufli, B. De Pontieu, N. Katz, A. Title, E. M. Gullikson, J. C. Robinson, S. L. Baker, "The high-resolution lightweight telescope for the EUV (HiLiTE)", Proc. SPIE 7011, 70113K (2008).

EUVL collector optics have more relaxed figure specs compared to camera optics and could be fabricated using low-cost techniques



 Aspherical mirrors made by conventional figuring / finishing are very expensive

• Diamond-turned (metal) or ground (ceramic) mirrors are much cheaper and meet EUVL collector figure specs but have insufficient high-spatial frequency roughness (HSFR)

#### Proposed solution:

• Fabricate diamond-turned metal (e.g. Al) or ground ceramic (e.g. SiC) mirrors

- Reduce HSFR with smoothing film
- Follow with appropriate coating (single-layer or multilayer) for EUV reflectance

J. A. Folta, C. Montcalm, J. S. Taylor, E. A. Spiller, "Low-cost method for producing extreme ultraviolet lithography optics", U.S. Patent No. 6,634,760.

#### Polyimide-smoothing of diamond-turned EUVL collector substrates dramatically improves HSFR while maintaining figure





Visible light interferometry results from multilayer-

Polyimide smoothes high spatial frequency roughness, including 10 µm-range diamond turning marks



microscope operated at 40× objective lens magnification

R. Soufli, E. Spiller, M. A. Schmidt, J. C. Robinson, S. L. Baker, S. Ratti, M. A. Johnson, E. M. Gullikson, Opt. Eng. 43(12), 3089-3095 (2004).



#### We have developed diffraction-limited, damage-resistant x-ray mirror coatings for the LCLS free-electron laser





0.14 nm rms (spec = 1 nm rms) across 175 mm CA



R. Soufli, at al, Proc. SPIE 7077, 707716 (2008). A. Barty et al, Optics Express (2009).



50 nm-thick SiC on Si substrate. Coating variation = 0.34 nm rms (spec = 1 nm rms) across 385 mm CA

Regina Soufli, 07/15/09

450 mm

## B<sub>4</sub>C thin film deposition parameters were especially modified to reduce coating stress

| Т |   |   |   |   |
|---|---|---|---|---|
|   |   |   |   |   |
|   |   |   |   |   |
|   |   | - |   | 7 |
|   |   |   | 7 |   |
|   | _ | - |   |   |



### Acknowledgements



- The EUVL results in this presentation have been obtained through collaboration between researchers at Lawrence Livermore, Lawrence Berkeley and Sandia National Laboratories. Funding was provided by the EUV LLC (through a Cooperative Research and Development Agreement) and by Sematech
- Funding for the AIA / SDO EUV multilayer optics was provided by the Smithsonian Astrophysical Observatory
- Funding for the SUVI / GOES-R EUV multilayer optics was provided by Lockheed Martin Corporation
- LCLS work was funded by DOE Contract DE-AC02-76SF00515. This work was performed in support of the LCLS project at SLAC.
- This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.