EUV Workshop 2015 Maui, HI

1

Novel EUV Resist Development for Sub-14nm Half Pitch

Yoshi Hishiro JSR Micro Inc.

Contents

- Requirement for sub-14nm HP EUV resist
- JSR strategy for resolution & sensitivity improvement
 - High Tg Resin
 - Short diffusion length PAG
 - Strong acidity PAG
- JSR new high resolution CAR
- Sensitivity improvement by new sensitizer
- Summary

When Will EUV Come in Industry?

ITRS 2013 (MPU Fins and Flash Lines)

Year		' 14	'16	'18	' 20	' 22	' 24	' 26	'28
Min hp after multi. patterning		17nm	14nm	12nm	12nm	11nm	8.4nm	6.7nm	5.3nm
20 - 30nm	ArF Imm DP								
15 - 20nm	ArF Imm QP								
11 - 15nm	ArF Imm QP, DSA, EUV DP, Imprint								
8 - 11nm	DSA, EUV DP, High NA EUV, Imprint, ML2								
- 8nm	DSA extension, EUV DP, High NA EUV. Imprint. ML2	Researd	ch		Developi	nent Pre		Continuo	us

> EUV will be ready for mass production on 2017-18?

Sub-14nm resolution will be required for EUV resist.

Requirements for EUV Resist

Source Dower	Resist			
Source Power	Requirements	Appropriate Platforms		
Low	✓ Super high sensitivity	Super sensitive novel resist		
Middle	✓ RLS balance✓ Defectivity control	CAR extension		
	✓ RL improvement✓ Defectivity control	CAR extension		
High	 ✓ Super high resolution ✓ Super low LWR/LER ✓ Defectivity control 	Super smooth Non CAR Resist		

Requirement and platform depend on source power.
 In any case, <u>Resolution</u> and <u>Sensitivity</u> are key requirements.

Strategy for Resolution & Sensitivity Improvement

Requirements for EUV resist

JSR Strategy for Resolution & Sensitivity improvement

ltem	Strategy
Resin	High Tg resin for acid diffusion control
PAG	New short diffusion length and strong acidity PAG
Additive	New sensitizer for high EUV photoabsorption

Acid Diffusion Control by Resin

Berkeley MET, NA0.30

Z-factor = (Resolution)³ X (LER)² X (Sensitivity) T. Wallow et. Al. SPIE 2008, 69211F

Acid diffusion control by higher Tg resin is effective approach for improving resolution and Z-factor.
#Detail was published at SPIE 2014 (9048-48)

PAG Development (Diffusion length)

> Acid diffusion length is one of the important nobs.

> New short diffusion PAG enabled the breakthrough performance.

#Detail was published at SPIE 2015 (9422-24)

High Resolution CAR (BMET) Short diffusion length PAG

> 13nm HP was resolved with short diffusion length PAG on BMET.

High Resolution CAR on NXE3300

Ultimate resolution of JSR CAR

NXE3300, Dipole45, FT=30nm

13nmHP LS

45mJ/cm²

15nmHP LS **37.5mJ/cm²**

Resolved

14nmHP LS 45mJ/cm²

Many collapse

Short diffusion PAG almost resolves 14nmHP on NXE3300.

High Resolution CAR on NXE3300

16nmHP LS & 20nm Iso Trench performance

short diffusion length PAG

JSR CAR FT=30nm Mask		Dose to Size Min. CD (mJ/cm ²) (nm)		ELmax (%)	DOFmax (nm)	LWR (nm)
16nmHP LS	16L32P	44.8	14.8	18.6	100	4.3
20nm Iso Trench	22T112P	40.9	18.5	17.7	120	4.2

16nmHP LS

20nm IT

NXE3300, Dipole90

JSR CAR resist showed good 16nmHP LS & 20nm IT process window.

PAG Development (Acidity)

Micro JSR

Exposed at BMET, NA0.30

 ✓ Strong acidity PAG is effective for sensitivity improvement. But LWR and sensitivity are trade-off.

PAG Development (Diffusion length and Acidity)

Micro JSR

Exposed at PSI

New PAG

 ✓ JSR new short diffusion & high acidity PAG enables breakthrough performance

JSR EUV Resist for 16nm HP

Exposure Courtesy of ASML and imec

✓ JSR EUV photoresist showed certain process window at 16nmHP.

JSR High Resolution Resist

 ✓ 13nm HP (NXE3300) and 12nm HP (PSI) resolution was achieved by JSR EUV photoresist.

SR Micro USR

EUV Workshop, June 17, 2015

imec

Concept of New Sensitizer

EUV photoabsorption is key factor for efficient secondary electrons generation.

> JSR developed new sensitizer using high EUV photoabsorption atom.

Sensitivity Improvement: New Sensitizer

Berkeley MET, NA0.30

	Conventional CAR	CAR + New Sensitizer
SEM Image Mask: 18L36P		
Sensitivity (mJ/cm ²)	54.2 Improv	vement 45.8
CD (nm)	17.5	18.0
LWR (nm)	2.7	2.8

JSR new sensitizer improves EUV resist sensitivity with keeping resolution and roughness at sub-20nmhp.

Outgassing of new CAR + Sensitizer system: <u>CC=3.29nm</u>

Berkeley MET, NA0.30

Sensitivity Improvement: New Sensitizer

New sensitizer system is applicable for various resists. EUV Workshop, June 17, 2015

Summary

- ✓ Material development for breakthrough CAR performance
 - Short diffusion length PAG
 - Short diffusion length and strong acidity PAG
- ✓ JSR new high resolution CAR
 - Good 16nmHP LS & 20nm IT process window on NXE3300
 - 13nmHP resolution on NXE 3300
 - 12nmHP resolution on PSI
- ✓ New sensitizer development
 - Sensitivity improvement with keeping resolution & roughness
 - Applicable for various resist

Target of 2015

Resolution:13nmhp, Sensitivity:20mJ/cm², LWR:2nm

Investigation of various approaches to improve litho performance
 Collaboration with imec and partners for NXE exposure

Acknowledgement

The author gratefully thanks to:

ASML for the NXE3300 exposure and valuable discussion

imec for the close collaboration and discussion

Thank you for your attention !!

2007

2008 26 nm LS, ArFi DP

2010 19 nm LS, EUV

2015 13nm LS, EUV

Materials Innovation

